File size: 1,734 Bytes
64f03b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
base_model: Fsoft-AIC/videberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: MRC_ER_videberta-base_word_ViWikiFC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MRC_ER_videberta-base_word_ViWikiFC
This model is a fine-tuned version of [Fsoft-AIC/videberta-base](https://huggingface.co/Fsoft-AIC/videberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0166
- Exact Match: 0.7804
- F1: 0.8093
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:-----------:|:------:|
| 0.6374 | 1.0 | 2093 | 1.7652 | 0.7622 | 0.7962 |
| 0.5612 | 2.0 | 4186 | 1.7521 | 0.7718 | 0.8046 |
| 0.5021 | 3.0 | 6279 | 1.8670 | 0.7823 | 0.8110 |
| 0.4184 | 4.0 | 8372 | 1.9411 | 0.7823 | 0.8087 |
| 0.381 | 5.0 | 10465 | 2.0166 | 0.7804 | 0.8093 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|