tsunghanwu
commited on
Commit
•
100ea29
1
Parent(s):
f39eaf0
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,106 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
## MIRAGE
|
6 |
+
|
7 |
+
**Model Type:** MIRAGE is an innovative open-source visual-RAG model capable of processing over 10,000 images as input. It integrates a retriever and a large multimodal model (LMM) for enhanced performance.
|
8 |
+
|
9 |
+
**Key Features:**
|
10 |
+
- **Compressor:** Reduces data size by compressing image tokens by 18x per image, enabling efficient handling of large datasets.
|
11 |
+
- **Query-Aware Retriever:** Dynamically filters out irrelevant images to focus processing power on content that enhances task performance.
|
12 |
+
- **Multi-Image LMM:** Features a tailored pretraining and instruction tuning dataset, designed to optimize model performance across a range of multimodal tasks.
|
13 |
+
|
14 |
+
**Performance:**
|
15 |
+
- MIRAGE establishes a new benchmark in open-source performance on the [Visual Haystacks (VHs) benchmark](https://huggingface.co/datasets/tsunghanwu/visual_haystacks).
|
16 |
+
- Delivers robust results across various single- and multi-image question answering tasks, such as RETVQA, MMBench, MMVet, VQAv2, and more.
|
17 |
+
|
18 |
+
**Usage:**
|
19 |
+
Please refer to the installation guide on our GitHub repository to get started with MIRAGE: [Installation Guide](https://github.com/visual-haystacks/mirage)
|
20 |
+
|
21 |
+
**Additional Resources:**
|
22 |
+
For detailed information and updates, visit our project page: [Visual Haystacks Project](https://visual-haystacks.github.io/)
|
23 |
+
|
24 |
+
**Support:**
|
25 |
+
For questions or comments about the model, please open an issue on our GitHub page: [GitHub Issues](https://github.com/visual-haystacks/mirage/issues)
|
26 |
+
|
27 |
+
**Intended Use:**
|
28 |
+
MIRAGE is primarily intended for research into large multimodal models (LMMs), long-context modeling, and retrieval-augmented generation (RAG).
|
29 |
+
|
30 |
+
### Example Usage Code
|
31 |
+
|
32 |
+
```python
|
33 |
+
from PIL import Image
|
34 |
+
import argparse
|
35 |
+
import torch
|
36 |
+
import os
|
37 |
+
|
38 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
39 |
+
from llava.conversation import conv_templates
|
40 |
+
from llava.model.builder import load_pretrained_model
|
41 |
+
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
42 |
+
from llava.utils import disable_torch_init
|
43 |
+
|
44 |
+
@torch.inference_mode()
|
45 |
+
def run(model_path, image_paths, prompt, num_retrievals=1):
|
46 |
+
'''
|
47 |
+
Executes MIRAGE with specified inputs to generate descriptive text based on the provided images.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
model_path (str): Path to the MIRAGE model, e.g., 'tsunghanwu/mirage-llama3.1-8.3B'
|
51 |
+
image_paths (list): List of paths to image files, e.g., images in 'assets/example'
|
52 |
+
prompt (str): Text prompt for image description, e.g., 'Here are a set of random images in my photo album.
|
53 |
+
If you can find a cat, tell me what's the cat doing and what's its color.'
|
54 |
+
num_retrievals (int): Maximum number of images to retrieve and pass to the LMM
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
output_text (str): Descriptive text generated by the LMM
|
58 |
+
output_ret (list): List of images retrieved by the model
|
59 |
+
'''
|
60 |
+
# Load the model and prepare the environment
|
61 |
+
model_name = get_model_name_from_path(model_path)
|
62 |
+
disable_torch_init()
|
63 |
+
model_name = os.path.expanduser(model_name)
|
64 |
+
tokenizer, model, image_processor, _ = \
|
65 |
+
load_pretrained_model(model_path=model_path, model_base=None, model_name=model_name, device="cuda")
|
66 |
+
model.eval_mode = True
|
67 |
+
|
68 |
+
# Process the images
|
69 |
+
clip_images = []
|
70 |
+
for image_path in image_paths:
|
71 |
+
image = Image.open(image_path). convert("RGB")
|
72 |
+
image_tensor = process_images([image], image_processor, model.config)[0]
|
73 |
+
image_tensor = image_tensor.to(dtype=torch.float16)
|
74 |
+
clip_images.append(image_tensor)
|
75 |
+
|
76 |
+
# Prepare text input and interaction
|
77 |
+
qformer_text_input = tokenizer(prompt, return_tensors='pt')["input_ids"].to(model.device)
|
78 |
+
N = len(clip_images)
|
79 |
+
img_str = DEFAULT_IMAGE_TOKEN * N + "\n"
|
80 |
+
inp = img_str + prompt
|
81 |
+
conv.append_message(conv.roles[0], inp)
|
82 |
+
conv.append_message(conv.roles[1], None)
|
83 |
+
prompt = conv.get_prompt()
|
84 |
+
|
85 |
+
# Generate model output
|
86 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
|
87 |
+
tokenizer.pad_token_id = 128002
|
88 |
+
batch_clip_images = [torch.stack(clip_images).to(model.device)]
|
89 |
+
|
90 |
+
output_ret, output_ids = model.generate(
|
91 |
+
input_ids,
|
92 |
+
pad_token_id=tokenizer.pad_token_id,
|
93 |
+
clip_images=batch_clip_images,
|
94 |
+
qformer_text_input=qformer_text_input,
|
95 |
+
relevance=None,
|
96 |
+
num_retrieval=num_retrievals,
|
97 |
+
do_sample=False,
|
98 |
+
max_new_tokens=512,
|
99 |
+
use_cache=True)
|
100 |
+
|
101 |
+
# Process output
|
102 |
+
output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
103 |
+
if not isinstance(output_ret[0], list):
|
104 |
+
output_ret[0] = output_ret[0].tolist()
|
105 |
+
return output_text, output_ret[0]
|
106 |
+
```
|