Model save
Browse files- README.md +70 -0
- all_results.json +9 -0
- train_results.json +9 -0
- trainer_state.json +307 -0
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
|
3 |
+
library_name: peft
|
4 |
+
license: llama3.1
|
5 |
+
tags:
|
6 |
+
- trl
|
7 |
+
- sft
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: problem347_model_mit
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# problem347_model_mit
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0292
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 1
|
42 |
+
- eval_batch_size: 1
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- gradient_accumulation_steps: 2
|
46 |
+
- total_train_batch_size: 2
|
47 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
+
- lr_scheduler_type: cosine
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 2
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
56 |
+
| No log | 0 | 0 | 0.1121 |
|
57 |
+
| 0.1136 | 0.4 | 30 | 0.0323 |
|
58 |
+
| 0.0854 | 0.8 | 60 | 0.0274 |
|
59 |
+
| 0.0524 | 1.2 | 90 | 0.0294 |
|
60 |
+
| 0.0612 | 1.6 | 120 | 0.0289 |
|
61 |
+
| 0.082 | 2.0 | 150 | 0.0292 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- PEFT 0.13.2
|
67 |
+
- Transformers 4.47.0.dev0
|
68 |
+
- Pytorch 2.4.0+cu121
|
69 |
+
- Datasets 3.1.0
|
70 |
+
- Tokenizers 0.20.3
|
all_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.0,
|
3 |
+
"total_flos": 8212577402880.0,
|
4 |
+
"train_loss": 0.09479607075452805,
|
5 |
+
"train_runtime": 682.7157,
|
6 |
+
"train_samples": 150,
|
7 |
+
"train_samples_per_second": 0.439,
|
8 |
+
"train_steps_per_second": 0.22
|
9 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.0,
|
3 |
+
"total_flos": 8212577402880.0,
|
4 |
+
"train_loss": 0.09479607075452805,
|
5 |
+
"train_runtime": 682.7157,
|
6 |
+
"train_samples": 150,
|
7 |
+
"train_samples_per_second": 0.439,
|
8 |
+
"train_steps_per_second": 0.22
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.0,
|
5 |
+
"eval_steps": 30,
|
6 |
+
"global_step": 150,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0,
|
13 |
+
"eval_loss": 0.11211773008108139,
|
14 |
+
"eval_runtime": 0.9743,
|
15 |
+
"eval_samples_per_second": 1.026,
|
16 |
+
"eval_steps_per_second": 1.026,
|
17 |
+
"step": 0
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.013333333333333334,
|
21 |
+
"grad_norm": 0.031030020275519335,
|
22 |
+
"learning_rate": 3.3333333333333333e-06,
|
23 |
+
"loss": 0.1667,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.06666666666666667,
|
28 |
+
"grad_norm": 0.03834570557711562,
|
29 |
+
"learning_rate": 1.6666666666666667e-05,
|
30 |
+
"loss": 0.2058,
|
31 |
+
"step": 5
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.13333333333333333,
|
35 |
+
"grad_norm": 0.028094023294595035,
|
36 |
+
"learning_rate": 3.3333333333333335e-05,
|
37 |
+
"loss": 0.1865,
|
38 |
+
"step": 10
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.2,
|
42 |
+
"grad_norm": 0.04762041128095506,
|
43 |
+
"learning_rate": 5e-05,
|
44 |
+
"loss": 0.1856,
|
45 |
+
"step": 15
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.26666666666666666,
|
49 |
+
"grad_norm": 0.028418698028222177,
|
50 |
+
"learning_rate": 4.983095894354858e-05,
|
51 |
+
"loss": 0.0908,
|
52 |
+
"step": 20
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.3333333333333333,
|
56 |
+
"grad_norm": 0.034568736978493136,
|
57 |
+
"learning_rate": 4.9326121764495596e-05,
|
58 |
+
"loss": 0.1115,
|
59 |
+
"step": 25
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.4,
|
63 |
+
"grad_norm": 0.016206653452619863,
|
64 |
+
"learning_rate": 4.849231551964771e-05,
|
65 |
+
"loss": 0.1136,
|
66 |
+
"step": 30
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.4,
|
70 |
+
"eval_loss": 0.032250553369522095,
|
71 |
+
"eval_runtime": 1.0414,
|
72 |
+
"eval_samples_per_second": 0.96,
|
73 |
+
"eval_steps_per_second": 0.96,
|
74 |
+
"step": 30
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.4666666666666667,
|
78 |
+
"grad_norm": 0.021469934923105765,
|
79 |
+
"learning_rate": 4.734081600808531e-05,
|
80 |
+
"loss": 0.0643,
|
81 |
+
"step": 35
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.5333333333333333,
|
85 |
+
"grad_norm": 0.055096082731337134,
|
86 |
+
"learning_rate": 4.588719528532342e-05,
|
87 |
+
"loss": 0.1261,
|
88 |
+
"step": 40
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 0.6,
|
92 |
+
"grad_norm": 0.05031835137603206,
|
93 |
+
"learning_rate": 4.415111107797445e-05,
|
94 |
+
"loss": 0.1096,
|
95 |
+
"step": 45
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.6666666666666666,
|
99 |
+
"grad_norm": 0.05516939025833793,
|
100 |
+
"learning_rate": 4.215604094671835e-05,
|
101 |
+
"loss": 0.0866,
|
102 |
+
"step": 50
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 0.7333333333333333,
|
106 |
+
"grad_norm": 0.032766685078341795,
|
107 |
+
"learning_rate": 3.9928964792569655e-05,
|
108 |
+
"loss": 0.083,
|
109 |
+
"step": 55
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.8,
|
113 |
+
"grad_norm": 0.062414929894008056,
|
114 |
+
"learning_rate": 3.7500000000000003e-05,
|
115 |
+
"loss": 0.0854,
|
116 |
+
"step": 60
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.8,
|
120 |
+
"eval_loss": 0.02738812565803528,
|
121 |
+
"eval_runtime": 0.8308,
|
122 |
+
"eval_samples_per_second": 1.204,
|
123 |
+
"eval_steps_per_second": 1.204,
|
124 |
+
"step": 60
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"epoch": 0.8666666666666667,
|
128 |
+
"grad_norm": 0.04592653742748478,
|
129 |
+
"learning_rate": 3.490199415097892e-05,
|
130 |
+
"loss": 0.0982,
|
131 |
+
"step": 65
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"epoch": 0.9333333333333333,
|
135 |
+
"grad_norm": 0.050049367221732345,
|
136 |
+
"learning_rate": 3.217008081777726e-05,
|
137 |
+
"loss": 0.0871,
|
138 |
+
"step": 70
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"epoch": 1.0,
|
142 |
+
"grad_norm": 0.05998266046794504,
|
143 |
+
"learning_rate": 2.9341204441673266e-05,
|
144 |
+
"loss": 0.1206,
|
145 |
+
"step": 75
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 1.0666666666666667,
|
149 |
+
"grad_norm": 0.019636243300368693,
|
150 |
+
"learning_rate": 2.6453620722761896e-05,
|
151 |
+
"loss": 0.088,
|
152 |
+
"step": 80
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 1.1333333333333333,
|
156 |
+
"grad_norm": 0.043655221641392454,
|
157 |
+
"learning_rate": 2.3546379277238107e-05,
|
158 |
+
"loss": 0.0855,
|
159 |
+
"step": 85
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.2,
|
163 |
+
"grad_norm": 0.04216235250268384,
|
164 |
+
"learning_rate": 2.0658795558326743e-05,
|
165 |
+
"loss": 0.0524,
|
166 |
+
"step": 90
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.2,
|
170 |
+
"eval_loss": 0.029387038201093674,
|
171 |
+
"eval_runtime": 0.8351,
|
172 |
+
"eval_samples_per_second": 1.197,
|
173 |
+
"eval_steps_per_second": 1.197,
|
174 |
+
"step": 90
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.2666666666666666,
|
178 |
+
"grad_norm": 0.06963947213522952,
|
179 |
+
"learning_rate": 1.7829919182222752e-05,
|
180 |
+
"loss": 0.071,
|
181 |
+
"step": 95
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.3333333333333333,
|
185 |
+
"grad_norm": 0.043611217695380816,
|
186 |
+
"learning_rate": 1.509800584902108e-05,
|
187 |
+
"loss": 0.0664,
|
188 |
+
"step": 100
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 1.4,
|
192 |
+
"grad_norm": 0.04198147697434117,
|
193 |
+
"learning_rate": 1.2500000000000006e-05,
|
194 |
+
"loss": 0.0678,
|
195 |
+
"step": 105
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 1.4666666666666668,
|
199 |
+
"grad_norm": 0.07071909102500858,
|
200 |
+
"learning_rate": 1.0071035207430352e-05,
|
201 |
+
"loss": 0.0654,
|
202 |
+
"step": 110
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"epoch": 1.5333333333333332,
|
206 |
+
"grad_norm": 0.06390301372675955,
|
207 |
+
"learning_rate": 7.843959053281663e-06,
|
208 |
+
"loss": 0.0827,
|
209 |
+
"step": 115
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 1.6,
|
213 |
+
"grad_norm": 0.049604240366544386,
|
214 |
+
"learning_rate": 5.848888922025553e-06,
|
215 |
+
"loss": 0.0612,
|
216 |
+
"step": 120
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 1.6,
|
220 |
+
"eval_loss": 0.02892993949353695,
|
221 |
+
"eval_runtime": 0.839,
|
222 |
+
"eval_samples_per_second": 1.192,
|
223 |
+
"eval_steps_per_second": 1.192,
|
224 |
+
"step": 120
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 1.6666666666666665,
|
228 |
+
"grad_norm": 0.07360390322146955,
|
229 |
+
"learning_rate": 4.112804714676594e-06,
|
230 |
+
"loss": 0.0845,
|
231 |
+
"step": 125
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 1.7333333333333334,
|
235 |
+
"grad_norm": 0.06226824488391461,
|
236 |
+
"learning_rate": 2.659183991914696e-06,
|
237 |
+
"loss": 0.0926,
|
238 |
+
"step": 130
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"epoch": 1.8,
|
242 |
+
"grad_norm": 0.05406489110230538,
|
243 |
+
"learning_rate": 1.5076844803522922e-06,
|
244 |
+
"loss": 0.0688,
|
245 |
+
"step": 135
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 1.8666666666666667,
|
249 |
+
"grad_norm": 0.06035274580908478,
|
250 |
+
"learning_rate": 6.738782355044049e-07,
|
251 |
+
"loss": 0.0741,
|
252 |
+
"step": 140
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"epoch": 1.9333333333333333,
|
256 |
+
"grad_norm": 0.06719978224301647,
|
257 |
+
"learning_rate": 1.6904105645142444e-07,
|
258 |
+
"loss": 0.0547,
|
259 |
+
"step": 145
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"epoch": 2.0,
|
263 |
+
"grad_norm": 0.09296641078603293,
|
264 |
+
"learning_rate": 0.0,
|
265 |
+
"loss": 0.082,
|
266 |
+
"step": 150
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 2.0,
|
270 |
+
"eval_loss": 0.02918284200131893,
|
271 |
+
"eval_runtime": 0.839,
|
272 |
+
"eval_samples_per_second": 1.192,
|
273 |
+
"eval_steps_per_second": 1.192,
|
274 |
+
"step": 150
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 2.0,
|
278 |
+
"step": 150,
|
279 |
+
"total_flos": 8212577402880.0,
|
280 |
+
"train_loss": 0.09479607075452805,
|
281 |
+
"train_runtime": 682.7157,
|
282 |
+
"train_samples_per_second": 0.439,
|
283 |
+
"train_steps_per_second": 0.22
|
284 |
+
}
|
285 |
+
],
|
286 |
+
"logging_steps": 5,
|
287 |
+
"max_steps": 150,
|
288 |
+
"num_input_tokens_seen": 0,
|
289 |
+
"num_train_epochs": 2,
|
290 |
+
"save_steps": 500,
|
291 |
+
"stateful_callbacks": {
|
292 |
+
"TrainerControl": {
|
293 |
+
"args": {
|
294 |
+
"should_epoch_stop": false,
|
295 |
+
"should_evaluate": false,
|
296 |
+
"should_log": false,
|
297 |
+
"should_save": true,
|
298 |
+
"should_training_stop": true
|
299 |
+
},
|
300 |
+
"attributes": {}
|
301 |
+
}
|
302 |
+
},
|
303 |
+
"total_flos": 8212577402880.0,
|
304 |
+
"train_batch_size": 1,
|
305 |
+
"trial_name": null,
|
306 |
+
"trial_params": null
|
307 |
+
}
|