--- base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B datasets: - tttx/problem347_mit library_name: peft license: llama3.1 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: problem347_model_mit results: [] --- # problem347_model_mit This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem347_mit dataset. It achieves the following results on the evaluation set: - Loss: 0.0292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0 | 0 | 0.1121 | | 0.1136 | 0.4 | 30 | 0.0323 | | 0.0854 | 0.8 | 60 | 0.0274 | | 0.0524 | 1.2 | 90 | 0.0294 | | 0.0612 | 1.6 | 120 | 0.0289 | | 0.082 | 2.0 | 150 | 0.0292 | ### Framework versions - PEFT 0.13.2 - Transformers 4.47.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3