--- license: apache-2.0 base_model: tohoku-nlp/bert-base-japanese-v3 tags: - generated_from_trainer metrics: - accuracy model-index: - name: gigazine-labeling results: [] --- # gigazine-labeling This model is a fine-tuned version of [tohoku-nlp/bert-base-japanese-v3](https://huggingface.co/tohoku-nlp/bert-base-japanese-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3062 - Accuracy: 0.623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.4089 | 1.0 | 125 | 1.5892 | 0.551 | | 1.2661 | 2.0 | 250 | 1.3291 | 0.601 | | 0.6811 | 3.0 | 375 | 1.3062 | 0.623 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1