File size: 1,357 Bytes
cfe845b
 
 
 
 
 
 
69824c8
cfe845b
 
 
 
 
 
40e087c
69824c8
 
cfe845b
 
 
40e087c
 
e1ca516
 
69824c8
40e087c
 
69824c8
 
 
40e087c
 
 
69824c8
cfe845b
9b6b0dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---

language: id
tags:
  - indobert
  - indobenchmark
  - indonlu
license: mit
inference: true
datasets:
  - Indo4B
---


# IndoBERT-Lite Large Model (phase2 - uncased) Finetuned on IndoNLU SmSA dataset

Finetuned the IndoBERT-Lite Large Model (phase2 - uncased) model on the IndoNLU SmSA dataset following the procedues stated in the paper [IndoNLU: Benchmark and Resources for Evaluating Indonesian
Natural Language Understanding](https://arxiv.org/pdf/2009.05387.pdf).

## How to use

```python

from transformers import pipeline

classifier = pipeline("text-classification", 

                      model='tyqiangz/indobert-lite-large-p2-smsa', 

                      return_all_scores=True)

text = "Penyakit koronavirus 2019"

prediction = classifier(text)

prediction



"""

Output:

[[{'label': 'positive', 'score': 0.0006000096909701824},

  {'label': 'neutral', 'score': 0.01223431620746851},

  {'label': 'negative', 'score': 0.987165629863739}]]

"""

```

**Finetuning hyperparameters:**
- learning rate: 2e-5
- batch size: 16
- no. of epochs: 5
- max sequence length: 512
- random seed: 42

**Classes:**
- 0: positive
- 1: neutral
- 2: negative

**Performance metrics on SmSA validation dataset**
- Validation accuracy: 0.94
- Validation F1: 0.91
- Validation Recall: 0.91
- Validation Precision: 0.93