--- language: - en metrics: - accuracy pipeline_tag: image-text-to-text base_model: - naver-clova-ix/donut-base-finetuned-cord-v2 tags: - logistics - document-parsing --- 🏗️ This is a FYP project topic on document parsing of 🚚 logistics 🚚 shipping documents for system integration. - https://huggingface.co/uartimcs/donut-booking-extract/blob/main/FYP.pdf Latest update on the version of modules used to continue run the program because there is no recent update for the donut pretrained model. **My use case:** Extract common key datafields from shipping documents generated from ten different shipping lines. **Repo & Datasets** - donut.zip (Original Donut Repo + Labelled Booking Dummy Datasets with JSONL files + Config Files) - sample-image-to-play.zip (Excess dummy datasets used to play and test the model) https://huggingface.co/spaces/uartimcs/donut-booking-gradio **Colab Notebooks** - donut-booking-train.ipynb (Train the model in Colab using T4 TPU / A100 GPU environment) - donut-booking-run.ipynb (Run the model in Colab using gradio using T4 TPU / A100 GPU environment) **Size of dataset** Follow the CORD-v2 dataset ratio: - train: 800 (80 pics x 10 classes) - validation: 100 (10 pics x 10 classes) - test: 100 (10 pics x 10 classes)