|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-base |
|
tags: |
|
- Question Answering |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mT5-base-turkish-qa |
|
results: [] |
|
language: |
|
- tr |
|
pipeline_tag: text2text-generation |
|
widget: |
|
- text: >- |
|
Soru: Nazım Hikmet ne zaman doğmuştur? |
|
|
|
Metin: Nâzım Hikmet, Mehmed Nâzım adıyla 15 Ocak 1902 tarihinde Selanik'te |
|
doğdu. O sırada Hariciye Nezareti memuru olarak Selanik'te çalışan Hikmet |
|
Bey, Nâzım'ın çocukluğunda memuriyetten ayrıldı ve ailesiyle birlikte, |
|
Halep'te bulunan babasının yanına gitti. Burada bulundukları sırada |
|
Hikmet-Celile çiftinin biri Ali İbrahim, diğeri Samiye adında iki çocuğu |
|
oldu, fakat Ali İbrahim dizanteriye yakalanıp öldü. |
|
datasets: |
|
- ucsahin/TR-Extractive-QA-82K |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mT5-base-turkish-qa |
|
|
|
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the [ucsahin/TR-Extractive-QA-82K](https://huggingface.co/datasets/ucsahin/TR-Extractive-QA-82K) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5109 |
|
- Rouge1: 79.3283 |
|
- Rouge2: 68.0845 |
|
- Rougel: 79.3474 |
|
- Rougelsum: 79.2937 |
|
|
|
## Model description |
|
|
|
mT5-base model is trained with manually curated Turkish dataset consisting of 65K training samples with ("question", "answer", "context") triplets. |
|
|
|
## Intended uses & limitations |
|
|
|
The intended use of the model is extractive question answering. |
|
|
|
In order to use the inference widget, enter your input in the format: |
|
``` |
|
Soru: question_text |
|
Metin: context_text |
|
``` |
|
|
|
Generated response by the model: |
|
``` |
|
Cevap: answer_text |
|
``` |
|
|
|
Use with Transformers: |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
from datasets import load_dataset |
|
|
|
# Load the dataset |
|
qa_tr_datasets = load_dataset("ucsahin/TR-Extractive-QA-82K") |
|
|
|
# Load model and tokenizer |
|
model_checkpoint = "ucsahin/mT5-base-turkish-qa" |
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) |
|
|
|
inference_dataset = qa_tr_datasets["test"].select(range(10)) |
|
|
|
for input in inference_dataset: |
|
input_question = "Soru: " + input["question"] |
|
input_context = "Metin: " + input["context"] |
|
|
|
tokenized_inputs = tokenizer(input_question, input_context, max_length=512, truncation=True, return_tensors="pt") |
|
outputs = model.generate(input_ids=tokenized_inputs["input_ids"], max_new_tokens=32) |
|
output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
print(f"Reference answer: {input['answer']}, Model Answer: {output_text}") |
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 2.0454 | 0.13 | 500 | 0.6771 | 73.1040 | 59.8915 | 73.1819 | 73.0558 | |
|
| 0.8012 | 0.26 | 1000 | 0.6012 | 76.3357 | 64.1967 | 76.3796 | 76.2688 | |
|
| 0.7703 | 0.39 | 1500 | 0.5844 | 76.8932 | 65.2509 | 76.9932 | 76.9418 | |
|
| 0.6783 | 0.51 | 2000 | 0.5587 | 76.7284 | 64.8453 | 76.7416 | 76.6720 | |
|
| 0.6546 | 0.64 | 2500 | 0.5362 | 78.2261 | 66.5893 | 78.2515 | 78.2142 | |
|
| 0.6289 | 0.77 | 3000 | 0.5133 | 78.6917 | 67.1534 | 78.6852 | 78.6319 | |
|
| 0.6292 | 0.9 | 3500 | 0.5109 | 79.3283 | 68.0845 | 79.3474 | 79.2937 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |