--- language: Chinese datasets: CLUECorpusSmall widget: - text: "内容丰富、版式设计考究、图片华丽、印制精美。[MASK]纸箱内还放了充气袋用于保护。" --- # Chinese Pegasus ## Model description This model is pre-trained by [UER-py](https://arxiv.org/abs/1909.05658). ## How to use You can use this model directly with a pipeline for text2text generation : ```python >>> from transformers import BertTokenizer, PegasusForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/pegasus-base-chinese-cluecorpussmall") >>> model = PegasusForConditionalGeneration.from_pretrained("uer/pegasus-base-chinese-cluecorpussmall") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("内容丰富、版式设计考究、图片华丽、印制精美。[MASK]纸箱内还放了充气袋用于保护。", max_length=50, do_sample=False) [{'generated_text': '书 的 质 量 很 好 。'}] ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 512. ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_bart_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --target bart ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_bart_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bart/base_config.json \ --output_model_path models/cluecorpussmall_bart_base_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 16 \ --span_masking --span_max_length 3 \ --embedding word_pos --tgt_embedding word_pos \ --encoder transformer --mask fully_visible --decoder transformer \ --target bart --tie_weights --has_lmtarget_bias ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bart_from_uer_to_huggingface.py --input_model_path cluecorpussmall_bart_base_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 6 ``` ### BibTeX entry and citation info ``` @article{lewis2019bart, title={Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension}, author={Lewis, Mike and Liu, Yinhan and Goyal, Naman and Ghazvininejad, Marjan and Mohamed, Abdelrahman and Levy, Omer and Stoyanov, Ves and Zettlemoyer, Luke}, journal={arXiv preprint arXiv:1910.13461}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ```