using System.Collections.Generic; using Unity.Sentis; using UnityEngine; /* * MovileNetV2 Inference Script * ============================ * * Place this script on the Main Camera * * Drag an image to the inputImage field * * When run the prediction of what the image is will output to the console window. * You can modify the script to make it do something more interesting. * */ public class RunMobileNet : MonoBehaviour { const string modelName = "mobilenet_v2.sentis"; //The image to classify here: public Texture2D inputImage; //Link class_desc.txt here: public TextAsset labelsAsset; //All images are resized to these values: const int imageHeight = 224; const int imageWidth = 224; const BackendType backend = BackendType.GPUCompute; private Model model; private IWorker engine; private string[] labels; static Ops ops; ITensorAllocator allocator; void Start() { //These are used for tensor operations allocator = new TensorCachingAllocator(); ops = WorkerFactory.CreateOps(backend, allocator); //Parse neural net labels labels = labelsAsset.text.Split('\n'); //Load model model = ModelLoader.Load(Application.streamingAssetsPath + "/" + modelName); //Setup the engine to run the model engine = WorkerFactory.CreateWorker(backend, model); //Execute inference ExecuteML(); } public void ExecuteML() { //Preprocess image for input using var rawinput = TextureConverter.ToTensor(inputImage, 224, 224, 3); using var input = Normalise(rawinput); //Execute neural net engine.Execute(input); //Read output tensor var output = engine.PeekOutput() as TensorFloat; var argmax = ops.ArgMax(output, 1, false); argmax.MakeReadable(); //Select the best output class and print the results var res = argmax[0]; var label = labels[res]; output.MakeReadable(); var accuracy = output[res]; //The result is output to the console window int percent = Mathf.FloorToInt(accuracy * 100f + 0.5f); Debug.Log($"{label} {percent}﹪"); //Clean memory Resources.UnloadUnusedAssets(); } //This scales and shifts the RGB values for input into the model TensorFloat Normalise(TensorFloat image) { using var M = new TensorFloat(new TensorShape(1, 3, 1, 1), new float[] { 1/0.229f, 1/0.224f, 1/0.225f }); using var P = new TensorFloat(new TensorShape(1, 3, 1, 1), new float[] { 0.485f, 0.456f, 0.406f }); using var image2 = ops.Sub(image, P); return ops.Mul(image2, M); } private void OnDestroy() { engine?.Dispose(); ops?.Dispose(); allocator?.Dispose(); } }