Upload README.md
Browse files
README.md
CHANGED
@@ -1,201 +1,108 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
43 |
|
44 |
-
|
|
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
|
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
|
|
|
|
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: image-to-text
|
3 |
+
tags:
|
4 |
+
- image-captioning
|
5 |
+
languages:
|
6 |
+
- en
|
7 |
+
license: bsd-3-clause
|
8 |
+
widget:
|
9 |
+
- src: >-
|
10 |
+
https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
|
11 |
+
example_title: Savanna
|
12 |
+
- src: >-
|
13 |
+
https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
|
14 |
+
example_title: Football Match
|
15 |
+
- src: >-
|
16 |
+
https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
|
17 |
+
example_title: Airport
|
18 |
+
datasets:
|
19 |
+
- unography/laion-14k-GPT4V-LIVIS-Captions
|
20 |
+
inference:
|
21 |
+
parameters:
|
22 |
+
max_length: 300
|
23 |
---
|
24 |
|
25 |
+
# LongCap: Finetuned [BLIP](https://huggingface.co/Salesforce/blip-image-captioning-base) for generating long captions of images, suitable for prompts for text-to-image generation and captioning text-to-image datasets
|
26 |
|
|
|
27 |
|
28 |
+
## Usage
|
29 |
|
30 |
+
You can use this model for conditional and un-conditional image captioning
|
31 |
|
32 |
+
### Using the Pytorch model
|
33 |
|
34 |
+
#### Running the model on CPU
|
35 |
|
36 |
+
<details>
|
37 |
+
<summary> Click to expand </summary>
|
38 |
|
39 |
+
```python
|
40 |
+
import requests
|
41 |
+
from PIL import Image
|
42 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
43 |
|
44 |
+
processor = BlipProcessor.from_pretrained("unography/blip-long-cap")
|
45 |
+
model = BlipForConditionalGeneration.from_pretrained("unography/blip-long-cap")
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
48 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
49 |
|
50 |
+
inputs = processor(raw_image, return_tensors="pt")
|
51 |
+
pixel_values = inputs.pixel_values
|
52 |
+
out = model.generate(pixel_values=pixel_values, max_length=250)
|
53 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
54 |
+
>>> a beach setting with a woman kneeling down and interacting with a dog. the woman is wearing a collar and is standing near the dog. the dog is positioned on the sand, and the atmosphere is calm and relaxing. there are no other people or animals in the image.
|
55 |
|
56 |
+
```
|
57 |
+
</details>
|
|
|
58 |
|
59 |
+
#### Running the model on GPU
|
60 |
|
61 |
+
##### In full precision
|
62 |
|
63 |
+
<details>
|
64 |
+
<summary> Click to expand </summary>
|
65 |
|
66 |
+
```python
|
67 |
+
import requests
|
68 |
+
from PIL import Image
|
69 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
70 |
|
71 |
+
processor = BlipProcessor.from_pretrained("unography/blip-long-cap")
|
72 |
+
model = BlipForConditionalGeneration.from_pretrained("unography/blip-long-cap").to("cuda")
|
73 |
|
74 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
75 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
76 |
|
77 |
+
inputs = processor(raw_image, return_tensors="pt").to("cuda")
|
78 |
+
pixel_values = inputs.pixel_values
|
79 |
+
out = model.generate(pixel_values=pixel_values, max_length=250)
|
80 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
81 |
+
>>> a beach setting with a woman kneeling down and interacting with a dog. the woman is wearing a collar and is standing near the dog. the dog is positioned on the sand, and the atmosphere is calm and relaxing. there are no other people or animals in the image.
|
82 |
+
```
|
83 |
+
</details>
|
84 |
|
85 |
+
##### In half precision (`float16`)
|
86 |
|
87 |
+
<details>
|
88 |
+
<summary> Click to expand </summary>
|
89 |
|
90 |
+
```python
|
91 |
+
import torch
|
92 |
+
import requests
|
93 |
+
from PIL import Image
|
94 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
95 |
|
96 |
+
processor = BlipProcessor.from_pretrained("unography/blip-long-cap")
|
97 |
+
model = BlipForConditionalGeneration.from_pretrained("unography/blip-long-cap", torch_dtype=torch.float16).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
100 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
101 |
|
102 |
+
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
103 |
+
pixel_values = inputs.pixel_values
|
104 |
+
out = model.generate(pixel_values=pixel_values, max_length=250)
|
105 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
106 |
+
>>> a beach setting with a woman kneeling down and interacting with a dog. the woman is wearing a collar and is standing near the dog. the dog is positioned on the sand, and the atmosphere is calm and relaxing. there are no other people or animals in the image.
|
107 |
+
```
|
108 |
+
</details>
|