File size: 30,931 Bytes
2aba3ca 5b0dd30 9dfc4d6 2aba3ca 9dfc4d6 2aba3ca 9dfc4d6 2aba3ca 72d10d8 2aba3ca 8686e7b 9dfc4d6 2aba3ca 9dfc4d6 2aba3ca 9dfc4d6 2aba3ca 9dfc4d6 8686e7b 9dfc4d6 2aba3ca 9dfc4d6 a9f1fab 90ff208 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 |
---
base_model: unsloth/Meta-Llama-3.1-8B
language:
- en
library_name: transformers
license: llama3.1
tags:
- llama-3
- llama
- meta
- facebook
- unsloth
- transformers
---
# Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here: https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
| **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
| **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
| **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
## Special Thanks
A huge thank you to the Meta and Llama team for creating and releasing these models.
## Model Information
The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
**Model developer**: Meta
**Model Architecture:** Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
<table>
<tr>
<td>
</td>
<td><strong>Training Data</strong>
</td>
<td><strong>Params</strong>
</td>
<td><strong>Input modalities</strong>
</td>
<td><strong>Output modalities</strong>
</td>
<td><strong>Context length</strong>
</td>
<td><strong>GQA</strong>
</td>
<td><strong>Token count</strong>
</td>
<td><strong>Knowledge cutoff</strong>
</td>
</tr>
<tr>
<td rowspan="3" >Llama 3.1 (text only)
</td>
<td rowspan="3" >A new mix of publicly available online data.
</td>
<td>8B
</td>
<td>Multilingual Text
</td>
<td>Multilingual Text and code
</td>
<td>128k
</td>
<td>Yes
</td>
<td rowspan="3" >15T+
</td>
<td rowspan="3" >December 2023
</td>
</tr>
<tr>
<td>70B
</td>
<td>Multilingual Text
</td>
<td>Multilingual Text and code
</td>
<td>128k
</td>
<td>Yes
</td>
</tr>
<tr>
<td>405B
</td>
<td>Multilingual Text
</td>
<td>Multilingual Text and code
</td>
<td>128k
</td>
<td>Yes
</td>
</tr>
</table>
**Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
**Llama 3.1 family of models**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Release Date:** July 23, 2024.
**Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License:** A custom commercial license, the Llama 3.1 Community License, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE)
Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
## Intended Use
**Intended Use Cases** Llama 3.1 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.1 model collection also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.1 Community License allows for these use cases.
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.1 Community License. Use in languages beyond those explicitly referenced as supported in this model card**.
**<span style="text-decoration:underline;">Note</span>: Llama 3.1 has been trained on a broader collection of languages than the 8 supported languages. Developers may fine-tune Llama 3.1 models for languages beyond the 8 supported languages provided they comply with the Llama 3.1 Community License and the Acceptable Use Policy and in such cases are responsible for ensuring that any uses of Llama 3.1 in additional languages is done in a safe and responsible manner.
## How to use
This repository contains two versions of Meta-Llama-3.1-8B-Instruct, for use with transformers and with the original `llama` codebase.
### Use with transformers
Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
Make sure to update your transformers installation via `pip install --upgrade transformers`.
```python
import transformers
import torch
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
outputs = pipeline(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes)
### Use with `llama`
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama)
To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
```
huggingface-cli download meta-llama/Meta-Llama-3.1-8B-Instruct --include "original/*" --local-dir Meta-Llama-3.1-8B-Instruct
```
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure.
**Training utilized a cumulative of** 39.3M GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency.
**Training Greenhouse Gas Emissions** Estimated total location-based greenhouse gas emissions were **11,390** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy, therefore the total market-based greenhouse gas emissions for training were 0 tons CO2eq.
<table>
<tr>
<td>
</td>
<td><strong>Training Time (GPU hours)</strong>
</td>
<td><strong>Training Power Consumption (W)</strong>
</td>
<td><strong>Training Location-Based Greenhouse Gas Emissions</strong>
<p>
<strong>(tons CO2eq)</strong>
</td>
<td><strong>Training Market-Based Greenhouse Gas Emissions</strong>
<p>
<strong>(tons CO2eq)</strong>
</td>
</tr>
<tr>
<td>Llama 3.1 8B
</td>
<td>1.46M
</td>
<td>700
</td>
<td>420
</td>
<td>0
</td>
</tr>
<tr>
<td>Llama 3.1 70B
</td>
<td>7.0M
</td>
<td>700
</td>
<td>2,040
</td>
<td>0
</td>
</tr>
<tr>
<td>Llama 3.1 405B
</td>
<td>30.84M
</td>
<td>700
</td>
<td>8,930
</td>
<td>0
</td>
</tr>
<tr>
<td>Total
</td>
<td>39.3M
<td>
<ul>
</ul>
</td>
<td>11,390
</td>
<td>0
</td>
</tr>
</table>
The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others.
## Training Data
**Overview:** Llama 3.1 was pretrained on ~15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 25M synthetically generated examples.
**Data Freshness:** The pretraining data has a cutoff of December 2023.
## Benchmark scores
In this section, we report the results for Llama 3.1 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library.
### Base pretrained models
<table>
<tr>
<td><strong>Category</strong>
</td>
<td><strong>Benchmark</strong>
</td>
<td><strong># Shots</strong>
</td>
<td><strong>Metric</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama 3.1 8B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama 3.1 70B</strong>
</td>
<td><strong>Llama 3.1 405B</strong>
</td>
</tr>
<tr>
<td rowspan="7" >General
</td>
<td>MMLU
</td>
<td>5
</td>
<td>macro_avg/acc_char
</td>
<td>66.7
</td>
<td>66.7
</td>
<td>79.5
</td>
<td>79.3
</td>
<td>85.2
</td>
</tr>
<tr>
<td>MMLU-Pro (CoT)
</td>
<td>5
</td>
<td>macro_avg/acc_char
</td>
<td>36.2
</td>
<td>37.1
</td>
<td>55.0
</td>
<td>53.8
</td>
<td>61.6
</td>
</tr>
<tr>
<td>AGIEval English
</td>
<td>3-5
</td>
<td>average/acc_char
</td>
<td>47.1
</td>
<td>47.8
</td>
<td>63.0
</td>
<td>64.6
</td>
<td>71.6
</td>
</tr>
<tr>
<td>CommonSenseQA
</td>
<td>7
</td>
<td>acc_char
</td>
<td>72.6
</td>
<td>75.0
</td>
<td>83.8
</td>
<td>84.1
</td>
<td>85.8
</td>
</tr>
<tr>
<td>Winogrande
</td>
<td>5
</td>
<td>acc_char
</td>
<td>-
</td>
<td>60.5
</td>
<td>-
</td>
<td>83.3
</td>
<td>86.7
</td>
</tr>
<tr>
<td>BIG-Bench Hard (CoT)
</td>
<td>3
</td>
<td>average/em
</td>
<td>61.1
</td>
<td>64.2
</td>
<td>81.3
</td>
<td>81.6
</td>
<td>85.9
</td>
</tr>
<tr>
<td>ARC-Challenge
</td>
<td>25
</td>
<td>acc_char
</td>
<td>79.4
</td>
<td>79.7
</td>
<td>93.1
</td>
<td>92.9
</td>
<td>96.1
</td>
</tr>
<tr>
<td>Knowledge reasoning
</td>
<td>TriviaQA-Wiki
</td>
<td>5
</td>
<td>em
</td>
<td>78.5
</td>
<td>77.6
</td>
<td>89.7
</td>
<td>89.8
</td>
<td>91.8
</td>
</tr>
<tr>
<td rowspan="4" >Reading comprehension
</td>
<td>SQuAD
</td>
<td>1
</td>
<td>em
</td>
<td>76.4
</td>
<td>77.0
</td>
<td>85.6
</td>
<td>81.8
</td>
<td>89.3
</td>
</tr>
<tr>
<td>QuAC (F1)
</td>
<td>1
</td>
<td>f1
</td>
<td>44.4
</td>
<td>44.9
</td>
<td>51.1
</td>
<td>51.1
</td>
<td>53.6
</td>
</tr>
<tr>
<td>BoolQ
</td>
<td>0
</td>
<td>acc_char
</td>
<td>75.7
</td>
<td>75.0
</td>
<td>79.0
</td>
<td>79.4
</td>
<td>80.0
</td>
</tr>
<tr>
<td>DROP (F1)
</td>
<td>3
</td>
<td>f1
</td>
<td>58.4
</td>
<td>59.5
</td>
<td>79.7
</td>
<td>79.6
</td>
<td>84.8
</td>
</tr>
</table>
### Instruction tuned models
<table>
<tr>
<td><strong>Category</strong>
</td>
<td><strong>Benchmark</strong>
</td>
<td><strong># Shots</strong>
</td>
<td><strong>Metric</strong>
</td>
<td><strong>Llama 3 8B Instruct</strong>
</td>
<td><strong>Llama 3.1 8B Instruct</strong>
</td>
<td><strong>Llama 3 70B Instruct</strong>
</td>
<td><strong>Llama 3.1 70B Instruct</strong>
</td>
<td><strong>Llama 3.1 405B Instruct</strong>
</td>
</tr>
<tr>
<td rowspan="4" >General
</td>
<td>MMLU
</td>
<td>5
</td>
<td>macro_avg/acc
</td>
<td>68.5
</td>
<td>69.4
</td>
<td>82.0
</td>
<td>83.6
</td>
<td>87.3
</td>
</tr>
<tr>
<td>MMLU (CoT)
</td>
<td>0
</td>
<td>macro_avg/acc
</td>
<td>65.3
</td>
<td>73.0
</td>
<td>80.9
</td>
<td>86.0
</td>
<td>88.6
</td>
</tr>
<tr>
<td>MMLU-Pro (CoT)
</td>
<td>5
</td>
<td>micro_avg/acc_char
</td>
<td>45.5
</td>
<td>48.3
</td>
<td>63.4
</td>
<td>66.4
</td>
<td>73.3
</td>
</tr>
<tr>
<td>IFEval
</td>
<td>
</td>
<td>
</td>
<td>76.8
</td>
<td>80.4
</td>
<td>82.9
</td>
<td>87.5
</td>
<td>88.6
</td>
</tr>
<tr>
<td rowspan="2" >Reasoning
</td>
<td>ARC-C
</td>
<td>0
</td>
<td>acc
</td>
<td>82.4
</td>
<td>83.4
</td>
<td>94.4
</td>
<td>94.8
</td>
<td>96.9
</td>
</tr>
<tr>
<td>GPQA
</td>
<td>0
</td>
<td>em
</td>
<td>34.6
</td>
<td>30.4
</td>
<td>39.5
</td>
<td>41.7
</td>
<td>50.7
</td>
</tr>
<tr>
<td rowspan="4" >Code
</td>
<td>HumanEval
</td>
<td>0
</td>
<td>pass@1
</td>
<td>60.4
</td>
<td>72.6
</td>
<td>81.7
</td>
<td>80.5
</td>
<td>89.0
</td>
</tr>
<tr>
<td>MBPP ++ base version
</td>
<td>0
</td>
<td>pass@1
</td>
<td>70.6
</td>
<td>72.8
</td>
<td>82.5
</td>
<td>86.0
</td>
<td>88.6
</td>
</tr>
<tr>
<td>Multipl-E HumanEval
</td>
<td>0
</td>
<td>pass@1
</td>
<td>-
</td>
<td>50.8
</td>
<td>-
</td>
<td>65.5
</td>
<td>75.2
</td>
</tr>
<tr>
<td>Multipl-E MBPP
</td>
<td>0
</td>
<td>pass@1
</td>
<td>-
</td>
<td>52.4
</td>
<td>-
</td>
<td>62.0
</td>
<td>65.7
</td>
</tr>
<tr>
<td rowspan="2" >Math
</td>
<td>GSM-8K (CoT)
</td>
<td>8
</td>
<td>em_maj1@1
</td>
<td>80.6
</td>
<td>84.5
</td>
<td>93.0
</td>
<td>95.1
</td>
<td>96.8
</td>
</tr>
<tr>
<td>MATH (CoT)
</td>
<td>0
</td>
<td>final_em
</td>
<td>29.1
</td>
<td>51.9
</td>
<td>51.0
</td>
<td>68.0
</td>
<td>73.8
</td>
</tr>
<tr>
<td rowspan="4" >Tool Use
</td>
<td>API-Bank
</td>
<td>0
</td>
<td>acc
</td>
<td>48.3
</td>
<td>82.6
</td>
<td>85.1
</td>
<td>90.0
</td>
<td>92.0
</td>
</tr>
<tr>
<td>BFCL
</td>
<td>0
</td>
<td>acc
</td>
<td>60.3
</td>
<td>76.1
</td>
<td>83.0
</td>
<td>84.8
</td>
<td>88.5
</td>
</tr>
<tr>
<td>Gorilla Benchmark API Bench
</td>
<td>0
</td>
<td>acc
</td>
<td>1.7
</td>
<td>8.2
</td>
<td>14.7
</td>
<td>29.7
</td>
<td>35.3
</td>
</tr>
<tr>
<td>Nexus (0-shot)
</td>
<td>0
</td>
<td>macro_avg/acc
</td>
<td>18.1
</td>
<td>38.5
</td>
<td>47.8
</td>
<td>56.7
</td>
<td>58.7
</td>
</tr>
<tr>
<td>Multilingual
</td>
<td>Multilingual MGSM (CoT)
</td>
<td>0
</td>
<td>em
</td>
<td>-
</td>
<td>68.9
</td>
<td>-
</td>
<td>86.9
</td>
<td>91.6
</td>
</tr>
</table>
#### Multilingual benchmarks
<table>
<tr>
<td><strong>Category</strong>
</td>
<td><strong>Benchmark</strong>
</td>
<td><strong>Language</strong>
</td>
<td><strong>Llama 3.1 8B</strong>
</td>
<td><strong>Llama 3.1 70B</strong>
</td>
<td><strong>Llama 3.1 405B</strong>
</td>
</tr>
<tr>
<td rowspan="9" ><strong>General</strong>
</td>
<td rowspan="9" ><strong>MMLU (5-shot, macro_avg/acc)</strong>
</td>
<td>Portuguese
</td>
<td>62.12
</td>
<td>80.13
</td>
<td>84.95
</td>
</tr>
<tr>
<td>Spanish
</td>
<td>62.45
</td>
<td>80.05
</td>
<td>85.08
</td>
</tr>
<tr>
<td>Italian
</td>
<td>61.63
</td>
<td>80.4
</td>
<td>85.04
</td>
</tr>
<tr>
<td>German
</td>
<td>60.59
</td>
<td>79.27
</td>
<td>84.36
</td>
</tr>
<tr>
<td>French
</td>
<td>62.34
</td>
<td>79.82
</td>
<td>84.66
</td>
</tr>
<tr>
<td>Hindi
</td>
<td>50.88
</td>
<td>74.52
</td>
<td>80.31
</td>
</tr>
<tr>
<td>Thai
</td>
<td>50.32
</td>
<td>72.95
</td>
<td>78.21
</td>
</tr>
</table>
## Responsibility & Safety
As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks:
* Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama.
* Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm.
* Provide protections for the community to help prevent the misuse of our models.
### Responsible deployment
Llama is a foundational technology designed to be used in a variety of use cases, examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models enabling the world to benefit from the technology power, by aligning our model safety for the generic use cases addressing a standard set of harms. Developers are then in the driver seat to tailor safety for their use case, defining their own policy and deploying the models with the necessary safeguards in their Llama systems. Llama 3.1 was developed following the best practices outlined in our Responsible Use Guide, you can refer to the [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to learn more.
#### Llama 3.1 instruct
Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. For more details on the safety mitigations implemented please read the Llama 3 paper.
**Fine-tuning data**
We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control.
**Refusals and Tone**
Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines.
#### Llama 3.1 systems
**Large language models, including Llama 3.1, are not designed to be deployed in isolation but instead should be deployed as part of an overall AI system with additional safety guardrails as required.** Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools.
As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard 3, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box.
#### New capabilities
Note that this release introduces new capabilities, including a longer context window, multilingual inputs and outputs and possible integrations by developers with third party tools. Building with these new capabilities requires specific considerations in addition to the best practices that generally apply across all Generative AI use cases.
**Tool-use**: Just like in standard software development, developers are responsible for the integration of the LLM with the tools and services of their choice. They should define a clear policy for their use case and assess the integrity of the third party services they use to be aware of the safety and security limitations when using this capability. Refer to the Responsible Use Guide for best practices on the safe deployment of the third party safeguards.
**Multilinguality**: Llama 3.1 supports 7 languages in addition to English: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. Llama may be able to output text in other languages than those that meet performance thresholds for safety and helpfulness. We strongly discourage developers from using this model to converse in non-supported languages without implementing finetuning and system controls in alignment with their policies and the best practices shared in the Responsible Use Guide.
### Evaluations
We evaluated Llama models for common use cases as well as specific capabilities. Common use cases evaluations measure safety risks of systems for most commonly built applications including chat bot, coding assistant, tool calls. We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Llama Guard 3 to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. Prompt Guard and Code Shield are also available if relevant to the application.
Capability evaluations measure vulnerabilities of Llama models inherent to specific capabilities, for which were crafted dedicated benchmarks including long context, multilingual, tools calls, coding or memorization.
**Red teaming**
For both scenarios, we conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets.
We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets.
### Critical and other risks
We specifically focused our efforts on mitigating the following critical risk areas:
**1- CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive materials) helpfulness**
To assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons.
**2. Child Safety**
Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
**3. Cyber attack enablement**
Our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed.
Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention.
Our study of Llama-3.1-405B’s social engineering uplift for cyber attackers was conducted to assess the effectiveness of AI models in aiding cyber threat actors in spear phishing campaigns. Please read our Llama 3.1 Cyber security whitepaper to learn more.
### Community
Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists).
Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
## Ethical Considerations and Limitations
The core values of Llama 3.1 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.1 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
But Llama 3.1 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.1’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.1 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development. |