File size: 3,425 Bytes
be20891
017958b
 
be20891
b6d7af1
017958b
 
 
 
 
be20891
 
3b12e49
 
be20891
017958b
be20891
017958b
be20891
3dd0adb
be20891
017958b
 
 
be20891
017958b
be20891
017958b
be20891
017958b
 
3dd0adb
be54cd5
3dd0adb
be54cd5
017958b
3dd0adb
 
017958b
be20891
017958b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---
language:
- en
library_name: transformers
license: gemma
tags:
- unsloth
- transformers
- gemma2
- gemma
---

## Reminder to use the dev version Transformers:
`pip install git+https://github.com/huggingface/transformers.git`

# Finetune Gemma, Llama 3, Mistral 2-5x faster with 70% less memory via Unsloth!

Directly quantized 4bit model with `bitsandbytes`.

We have a Google Colab Tesla T4 notebook for **Gemma 2 (9B)** here: https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/u54VK8m8tk)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/buy%20me%20a%20coffee%20button.png" width="200"/>](https://ko-fi.com/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

## ✨ Finetune for Free

All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.

| Unsloth supports          |    Free Notebooks                                                                                           | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama 3 (8B)**      | [▶️ Start on Colab](https://colab.research.google.com/drive/135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing)               | 2.4x faster | 58% less |
| **Gemma 2 (9B)**      | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing)               | 2x faster | 63% less |
| **Mistral (9B)**    | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing)               | 2.2x faster | 62% less |
| **Phi 3 (mini)**      | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing)               | 2x faster | 63% less |
| **TinyLlama**  | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)              | 3.9x faster | 74% less |
| **CodeLlama (34B)** A100   | [▶️ Start on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)              | 1.9x faster | 27% less |
| **Mistral (7B)** 1xT4  | [▶️ Start on Kaggle](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook) | 5x faster\* | 62% less |
| **DPO - Zephyr**     | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)               | 1.9x faster | 19% less |

- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.