File size: 5,896 Bytes
0556e7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
from functools import partial
import torch
import torch.nn.functional as F
from transformers.processing_utils import ProcessorMixin
from transformers.image_processing_utils import BaseImageProcessor
from transformers import AutoTokenizer, AutoConfig
from transformers import BatchFeature
from PIL import Image
from torchvision.transforms import (
Compose,
Normalize,
Resize,
ToTensor
)
IMAGENET_MEAN = (0.48145466, 0.4578275, 0.40821073)
IMAGENET_STD = (0.26862954, 0.26130258, 0.27577711)
def convert_to_rgb(x):
return x.convert("RGB")
def expand2square(image, background_color):
width, height = image.size
if width == height:
return image
elif width > height:
result = Image.new(image.mode, (width, width), background_color)
result.paste(image, (0, (width - height) // 2))
return result
else:
result = Image.new(image.mode, (height, height), background_color)
result.paste(image, ((height - width) // 2, 0))
return result
class ImageProcessor(BaseImageProcessor):
def __init__(
self,
image_size: int,
**kwargs
):
super().__init__(**kwargs)
self.transform = Compose(
[
convert_to_rgb,
partial(
expand2square,
background_color=tuple(int(255 * v) for v in IMAGENET_MEAN)
),
Resize(image_size),
ToTensor(),
Normalize(
mean=IMAGENET_MEAN,
std=IMAGENET_STD,
),
]
)
def preprocess(
self,
image: Image
):
return self.transform(image)
def __repr__(self):
return repr(self.transform)
class VLMProcessor(ProcessorMixin):
def __init__(self, config):
self.config = config
self.image_size = config.image_size
self.feature_extractor = ImageProcessor(self.image_size)
self.tokenizer = AutoTokenizer.from_pretrained(
config.text_decoder_name_or_path, additional_special_tokens=["<image>"]
)
self.tokenizer.chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
self.num_image_latents = config.num_image_latents
# super().__init__(self.image_processor, self.tokenizer)
def __call__(
self, text=None, images=None, **kwargs
):
if text is not None:
if isinstance(text, str):
text = [text]
tokenized_texts = []
for t in text:
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f" <image> {t}"},
]
tokenized_prompt = self.tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
)
tokenized_texts.append(tokenized_prompt)
max_len = max(len(t[0]) for t in tokenized_texts)
input_ids = torch.full(
(len(tokenized_texts), max_len),
fill_value=self.tokenizer.pad_token_id,
dtype=torch.int64,
)
attention_mask = torch.full(
(len(tokenized_texts), max_len), fill_value=0, dtype=torch.int64
)
for i, tokens in enumerate(tokenized_texts):
input_ids[i, -len(tokens[0]) :] = tokens[0]
attention_mask[i, -len(tokens[0]) :] = 1
attention_mask = F.pad(
attention_mask, pad=(0, self.num_image_latents - 1), value=1
)
encoding = BatchFeature(
data={"input_ids": input_ids, "attention_mask": attention_mask}
)
if images is not None:
if isinstance(images, (list, tuple)):
image_features = torch.empty(
(len(images), 3, self.image_size , self.image_size),
dtype=torch.float32,
)
for i, image in enumerate(images):
image_features[i] = self.feature_extractor(image)
else:
image_features = self.image_processor(images).unsqueeze(0)
if text is not None and images is not None:
encoding["images"] = image_features
return encoding
elif text is not None:
return encoding
else:
return BatchFeature(
data={
"images": image_features,
},
tensor_type=return_tensors,
)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path,
trust_remote_code=False,
**kwargs
):
config = AutoConfig.from_pretrained(
pretrained_model_name_or_path,
trust_remote_code=trust_remote_code
)
return cls(config)
|