upskyy commited on
Commit
a435c3b
1 Parent(s): b6288c1

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,90 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ pipeline_tag: text-classification
4
+ tags:
5
+ - transformers
6
+ - sentence-transformers
7
+ - text-embeddings-inference
8
+ language:
9
+ - ko
10
+ - multilingual
11
  ---
12
+
13
+
14
+ # upskyy/ko-reranker-8k
15
+
16
+ **ko-reranker-8k**는 [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) 모델에 [한국어 데이터](https://huggingface.co/datasets/upskyy/ko-wiki-reranking)를 finetuning 한 model 입니다.
17
+
18
+ ## Usage
19
+ ## Using FlagEmbedding
20
+ ```
21
+ pip install -U FlagEmbedding
22
+ ```
23
+
24
+ Get relevance scores (higher scores indicate more relevance):
25
+
26
+ ```python
27
+ from FlagEmbedding import FlagReranker
28
+
29
+
30
+ reranker = FlagReranker('upskyy/ko-reranker-8k', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
31
+
32
+ score = reranker.compute_score(['query', 'passage'])
33
+ print(score) # -8.3828125
34
+
35
+ # You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
36
+ score = reranker.compute_score(['query', 'passage'], normalize=True)
37
+ print(score) # 0.000228713314721116
38
+
39
+ scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
40
+ print(scores) # [-11.2265625, 8.6875]
41
+
42
+ # You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
43
+ scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)
44
+ print(scores) # [1.3315579521758342e-05, 0.9998313472460109]
45
+ ```
46
+
47
+
48
+ ## Using Huggingface transformers
49
+
50
+ Get relevance scores (higher scores indicate more relevance):
51
+
52
+
53
+ ```python
54
+ import torch
55
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
56
+
57
+
58
+ tokenizer = AutoTokenizer.from_pretrained('upskyy/ko-reranker-8k')
59
+ model = AutoModelForSequenceClassification.from_pretrained('upskyy/ko-reranker-8k')
60
+ model.eval()
61
+
62
+ pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
63
+ with torch.no_grad():
64
+ inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
65
+ scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
66
+ print(scores)
67
+ ```
68
+
69
+
70
+
71
+ ## Citation
72
+
73
+ ```bibtex
74
+ @misc{li2023making,
75
+ title={Making Large Language Models A Better Foundation For Dense Retrieval},
76
+ author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao},
77
+ year={2023},
78
+ eprint={2312.15503},
79
+ archivePrefix={arXiv},
80
+ primaryClass={cs.CL}
81
+ }
82
+ @misc{chen2024bge,
83
+ title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
84
+ author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
85
+ year={2024},
86
+ eprint={2402.03216},
87
+ archivePrefix={arXiv},
88
+ primaryClass={cs.CL}
89
+ }
90
+ ```
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-reranker-v2-m3",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "LABEL_0"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 4096,
18
+ "label2id": {
19
+ "LABEL_0": 0
20
+ },
21
+ "layer_norm_eps": 1e-05,
22
+ "max_position_embeddings": 8194,
23
+ "model_type": "xlm-roberta",
24
+ "num_attention_heads": 16,
25
+ "num_hidden_layers": 24,
26
+ "output_past": true,
27
+ "pad_token_id": 1,
28
+ "position_embedding_type": "absolute",
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.42.3",
31
+ "type_vocab_size": 1,
32
+ "use_cache": true,
33
+ "vocab_size": 250002
34
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e183acde4529239da62045982323f7040851aae2154f8d9c2681d2b791cbdc8a
3
+ size 2271071852
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69564b696052886ed0ac63fa393e928384e0f8caada38c1f4864a9bfbf379c15
3
+ size 17098273
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }