usbc-god commited on
Commit
0252cbc
1 Parent(s): b5f093c

End of training

Browse files
Files changed (2) hide show
  1. README.md +168 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: sethuiyer/Medichat-Llama3-8B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: iamx4a5d91f
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: sethuiyer/Medichat-Llama3-8B
23
+ bf16: auto
24
+ chat_template: llama3
25
+ cosine_min_lr_ratio: 0.1
26
+ data_processes: 16
27
+ dataset_prepared_path: null
28
+ datasets:
29
+ - data_files:
30
+ - c66d32e97b2bb622_train_data.json
31
+ ds_type: json
32
+ format: custom
33
+ path: /workspace/input_data/c66d32e97b2bb622_train_data.json
34
+ type:
35
+ field_input: content
36
+ field_instruction: document_type
37
+ field_output: insights
38
+ format: '{instruction} {input}'
39
+ no_input_format: '{instruction}'
40
+ system_format: '{system}'
41
+ system_prompt: ''
42
+ debug: null
43
+ deepspeed: null
44
+ device_map: '{'''':torch.cuda.current_device()}'
45
+ do_eval: true
46
+ early_stopping_patience: 1
47
+ eval_batch_size: 1
48
+ eval_sample_packing: false
49
+ eval_steps: 25
50
+ evaluation_strategy: steps
51
+ flash_attention: true
52
+ fp16: null
53
+ fsdp: null
54
+ fsdp_config: null
55
+ gradient_accumulation_steps: 32
56
+ gradient_checkpointing: true
57
+ group_by_length: true
58
+ hub_model_id: usbc-god/iamx4a5d91f
59
+ hub_repo: usbc-god
60
+ hub_strategy: checkpoint
61
+ hub_token: null
62
+ learning_rate: 0.0002
63
+ load_in_4bit: false
64
+ load_in_8bit: false
65
+ local_rank: null
66
+ logging_steps: 1
67
+ lora_alpha: 32
68
+ lora_dropout: 0.05
69
+ lora_fan_in_fan_out: null
70
+ lora_model_dir: null
71
+ lora_r: 16
72
+ lora_target_linear: true
73
+ lora_target_modules:
74
+ - q_proj
75
+ - v_proj
76
+ lr_scheduler: cosine
77
+ max_grad_norm: 1.0
78
+ max_memory:
79
+ 0: 70GiB
80
+ 1: 70GiB
81
+ 2: 70GiB
82
+ 3: 70GiB
83
+ max_steps: 5
84
+ micro_batch_size: 1
85
+ mlflow_experiment_name: /tmp/c66d32e97b2bb622_train_data.json
86
+ model_type: AutoModelForCausalLM
87
+ num_epochs: 3
88
+ optim_args:
89
+ adam_beta1: 0.9
90
+ adam_beta2: 0.95
91
+ adam_epsilon: 1e-5
92
+ optimizer: adamw_torch
93
+ output_dir: miner_id_24
94
+ pad_to_sequence_len: true
95
+ resume_from_checkpoint: null
96
+ s2_attention: null
97
+ sample_packing: false
98
+ save_steps: 50
99
+ save_strategy: steps
100
+ sequence_len: 2048
101
+ strict: false
102
+ tf32: false
103
+ tokenizer_type: AutoTokenizer
104
+ torch_compile: false
105
+ train_on_inputs: false
106
+ trust_remote_code: true
107
+ val_set_size: 50
108
+ wandb_entity: null
109
+ wandb_mode: online
110
+ wandb_project: Public_TuningSN
111
+ wandb_run: miner_id_24
112
+ wandb_runid: x4a5d91f
113
+ warmup_raio: 0.03
114
+ warmup_ratio: 0.04
115
+ weight_decay: 0.01
116
+ xformers_attention: null
117
+
118
+ ```
119
+
120
+ </details><br>
121
+
122
+ # iamx4a5d91f
123
+
124
+ This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on the None dataset.
125
+ It achieves the following results on the evaluation set:
126
+ - Loss: 0.1337
127
+
128
+ ## Model description
129
+
130
+ More information needed
131
+
132
+ ## Intended uses & limitations
133
+
134
+ More information needed
135
+
136
+ ## Training and evaluation data
137
+
138
+ More information needed
139
+
140
+ ## Training procedure
141
+
142
+ ### Training hyperparameters
143
+
144
+ The following hyperparameters were used during training:
145
+ - learning_rate: 0.0002
146
+ - train_batch_size: 1
147
+ - eval_batch_size: 1
148
+ - seed: 42
149
+ - gradient_accumulation_steps: 32
150
+ - total_train_batch_size: 32
151
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
152
+ - lr_scheduler_type: cosine
153
+ - training_steps: 5
154
+
155
+ ### Training results
156
+
157
+ | Training Loss | Epoch | Step | Validation Loss |
158
+ |:-------------:|:------:|:----:|:---------------:|
159
+ | 0.1421 | 0.0033 | 1 | 0.1337 |
160
+
161
+
162
+ ### Framework versions
163
+
164
+ - PEFT 0.13.2
165
+ - Transformers 4.46.0
166
+ - Pytorch 2.5.0+cu124
167
+ - Datasets 3.0.1
168
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c3f0a0249749f3310af7a7b89022e09bb85e60a9812d4edd8f0b3185331a027
3
+ size 167934026