update readme
Browse files
README.md
CHANGED
@@ -34,11 +34,13 @@ widget:
|
|
34 |
translate to zh: Цель разработки — предоставить пользователям личного синхронного переводчика.
|
35 |
---
|
36 |
|
37 |
-
# T5 English, Russian and Chinese
|
38 |
|
39 |
This is a [sentence-transformers](https://www.sbert.net/) model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model works well for sentence similarity tasks, but doesn't perform that well for semantic search tasks.
|
40 |
|
41 |
-
The model
|
|
|
|
|
42 |
|
43 |
|
44 |
## Usage (Sentence-Transformers)
|
@@ -49,6 +51,8 @@ Using this model becomes easy when you have [sentence-transformers](https://www.
|
|
49 |
pip install -U sentence-transformers
|
50 |
```
|
51 |
|
|
|
|
|
52 |
Then you can use the model like this:
|
53 |
|
54 |
```python
|
@@ -87,7 +91,7 @@ from transformers import T5ForConditionalGeneration, T5Tokenizer
|
|
87 |
|
88 |
device = 'cuda' #or 'cpu' for translate on cpu
|
89 |
|
90 |
-
model_name = 'utrobinmv/
|
91 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
92 |
model.to(device)
|
93 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
@@ -114,7 +118,7 @@ from transformers import T5ForConditionalGeneration, T5Tokenizer
|
|
114 |
|
115 |
device = 'cuda' #or 'cpu' for translate on cpu
|
116 |
|
117 |
-
model_name = 'utrobinmv/
|
118 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
119 |
model.to(device)
|
120 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
|
|
34 |
translate to zh: Цель разработки — предоставить пользователям личного синхронного переводчика.
|
35 |
---
|
36 |
|
37 |
+
# T5 English, Russian and Chinese sentence similarity model
|
38 |
|
39 |
This is a [sentence-transformers](https://www.sbert.net/) model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model works well for sentence similarity tasks, but doesn't perform that well for semantic search tasks.
|
40 |
|
41 |
+
The model can be used to search for parallel texts in Russian, English and Chinese.
|
42 |
+
|
43 |
+
To determine the similarity of sentences in the model, only the encoder from the T5-based model is used.
|
44 |
|
45 |
|
46 |
## Usage (Sentence-Transformers)
|
|
|
51 |
pip install -U sentence-transformers
|
52 |
```
|
53 |
|
54 |
+
|
55 |
+
|
56 |
Then you can use the model like this:
|
57 |
|
58 |
```python
|
|
|
91 |
|
92 |
device = 'cuda' #or 'cpu' for translate on cpu
|
93 |
|
94 |
+
model_name = 'utrobinmv/t5_translate_en_ru_zh_base_200_sent'
|
95 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
96 |
model.to(device)
|
97 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
|
|
118 |
|
119 |
device = 'cuda' #or 'cpu' for translate on cpu
|
120 |
|
121 |
+
model_name = 'utrobinmv/t5_translate_en_ru_zh_base_200_sent'
|
122 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
123 |
model.to(device)
|
124 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|