utrobinmv commited on
Commit
23d46d0
1 Parent(s): 06bec3b

update readme

Browse files
Files changed (1) hide show
  1. README.md +8 -4
README.md CHANGED
@@ -34,11 +34,13 @@ widget:
34
  translate to zh: Цель разработки — предоставить пользователям личного синхронного переводчика.
35
  ---
36
 
37
- # T5 English, Russian and Chinese multilingual machine translation
38
 
39
  This is a [sentence-transformers](https://www.sbert.net/) model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model works well for sentence similarity tasks, but doesn't perform that well for semantic search tasks.
40
 
41
- The model uses only the encoder from a T5-base model.
 
 
42
 
43
 
44
  ## Usage (Sentence-Transformers)
@@ -49,6 +51,8 @@ Using this model becomes easy when you have [sentence-transformers](https://www.
49
  pip install -U sentence-transformers
50
  ```
51
 
 
 
52
  Then you can use the model like this:
53
 
54
  ```python
@@ -87,7 +91,7 @@ from transformers import T5ForConditionalGeneration, T5Tokenizer
87
 
88
  device = 'cuda' #or 'cpu' for translate on cpu
89
 
90
- model_name = 'utrobinmv/t5_translate_en_ru_zh_large_1024'
91
  model = T5ForConditionalGeneration.from_pretrained(model_name)
92
  model.to(device)
93
  tokenizer = T5Tokenizer.from_pretrained(model_name)
@@ -114,7 +118,7 @@ from transformers import T5ForConditionalGeneration, T5Tokenizer
114
 
115
  device = 'cuda' #or 'cpu' for translate on cpu
116
 
117
- model_name = 'utrobinmv/t5_translate_en_ru_zh_large_1024'
118
  model = T5ForConditionalGeneration.from_pretrained(model_name)
119
  model.to(device)
120
  tokenizer = T5Tokenizer.from_pretrained(model_name)
 
34
  translate to zh: Цель разработки — предоставить пользователям личного синхронного переводчика.
35
  ---
36
 
37
+ # T5 English, Russian and Chinese sentence similarity model
38
 
39
  This is a [sentence-transformers](https://www.sbert.net/) model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model works well for sentence similarity tasks, but doesn't perform that well for semantic search tasks.
40
 
41
+ The model can be used to search for parallel texts in Russian, English and Chinese.
42
+
43
+ To determine the similarity of sentences in the model, only the encoder from the T5-based model is used.
44
 
45
 
46
  ## Usage (Sentence-Transformers)
 
51
  pip install -U sentence-transformers
52
  ```
53
 
54
+
55
+
56
  Then you can use the model like this:
57
 
58
  ```python
 
91
 
92
  device = 'cuda' #or 'cpu' for translate on cpu
93
 
94
+ model_name = 'utrobinmv/t5_translate_en_ru_zh_base_200_sent'
95
  model = T5ForConditionalGeneration.from_pretrained(model_name)
96
  model.to(device)
97
  tokenizer = T5Tokenizer.from_pretrained(model_name)
 
118
 
119
  device = 'cuda' #or 'cpu' for translate on cpu
120
 
121
+ model_name = 'utrobinmv/t5_translate_en_ru_zh_base_200_sent'
122
  model = T5ForConditionalGeneration.from_pretrained(model_name)
123
  model.to(device)
124
  tokenizer = T5Tokenizer.from_pretrained(model_name)