update readme
Browse files
README.md
CHANGED
@@ -52,10 +52,29 @@ Then you can use the model like this:
|
|
52 |
|
53 |
```python
|
54 |
from sentence_transformers import SentenceTransformer
|
55 |
-
|
|
|
56 |
model = SentenceTransformer('utrobinmv/t5_translate_en_ru_zh_base_200_sent')
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
```
|
60 |
|
61 |
|
|
|
52 |
|
53 |
```python
|
54 |
from sentence_transformers import SentenceTransformer
|
55 |
+
import torch.nn.functional as F
|
56 |
+
|
57 |
model = SentenceTransformer('utrobinmv/t5_translate_en_ru_zh_base_200_sent')
|
58 |
+
|
59 |
+
sentences_1 = ["The purpose of the development is to provide users with a personal simultaneous interpreter.",
|
60 |
+
"Съешь ещё этих мягких французских булок.",
|
61 |
+
"再吃这些法国的甜蜜的面包。"]
|
62 |
+
|
63 |
+
sentences_2 = ["Цель разработки — предоставить пользователям личного синхронного переводчика.",
|
64 |
+
"Have some more of these soft French rolls.",
|
65 |
+
"开发的目的就是向用户提供个性化的同步翻译。"]
|
66 |
+
|
67 |
+
embeddings = model.encode(sentences_1+sentences_2)
|
68 |
+
embeddings_1 = embeddings[:len(sentences_1)]
|
69 |
+
embeddings_2 = embeddings[len(sentences_1):]
|
70 |
+
|
71 |
+
similarity = embeddings_1 @ embeddings_2.T
|
72 |
+
print(similarity)
|
73 |
+
#[[ 0.8956245 -0.0390042 0.8493222 ]
|
74 |
+
# [ 0.00778637 0.85185283 -0.010229 ]
|
75 |
+
# [ 0.01991986 0.72560245 0.02547248]]
|
76 |
+
|
77 |
+
|
78 |
```
|
79 |
|
80 |
|