File size: 7,224 Bytes
1b9a513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed2d99d
 
 
 
 
 
 
1b9a513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed2d99d
1b9a513
ed2d99d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b9a513
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
model-index:
- name: layoutlm-custom_no_text
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-custom_no_text

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1118
- Noise: {'precision': 0.8832116788321168, 'recall': 0.8832116788321168, 'f1': 0.8832116788321168, 'number': 548}
- Signal: {'precision': 0.8594890510948905, 'recall': 0.8594890510948905, 'f1': 0.8594890510948904, 'number': 548}
- Overall Precision: 0.8714
- Overall Recall: 0.8714
- Overall F1: 0.8714
- Overall Accuracy: 0.9773

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Noise                                                                                                    | Signal                                                                                                   | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.4739        | 1.0   | 18   | 0.1915          | {'precision': 0.6647398843930635, 'recall': 0.6295620437956204, 'f1': 0.6466729147141518, 'number': 548} | {'precision': 0.6782273603082851, 'recall': 0.6423357664233577, 'f1': 0.6597938144329897, 'number': 548} | 0.6715            | 0.6359         | 0.6532     | 0.9293           |
| 0.188         | 2.0   | 36   | 0.1127          | {'precision': 0.8265107212475633, 'recall': 0.7737226277372263, 'f1': 0.7992459943449576, 'number': 548} | {'precision': 0.7953216374269005, 'recall': 0.7445255474452555, 'f1': 0.769085768143261, 'number': 548}  | 0.8109            | 0.7591         | 0.7842     | 0.9579           |
| 0.1052        | 3.0   | 54   | 0.0889          | {'precision': 0.8455743879472694, 'recall': 0.8193430656934306, 'f1': 0.8322520852641334, 'number': 548} | {'precision': 0.8248587570621468, 'recall': 0.7992700729927007, 'f1': 0.8118628359592215, 'number': 548} | 0.8352            | 0.8093         | 0.8221     | 0.9674           |
| 0.0645        | 4.0   | 72   | 0.0766          | {'precision': 0.8775510204081632, 'recall': 0.8631386861313869, 'f1': 0.8702851885924563, 'number': 548} | {'precision': 0.8552875695732839, 'recall': 0.8412408759124088, 'f1': 0.8482060717571298, 'number': 548} | 0.8664            | 0.8522         | 0.8592     | 0.9750           |
| 0.0427        | 5.0   | 90   | 0.0914          | {'precision': 0.8586956521739131, 'recall': 0.864963503649635, 'f1': 0.8618181818181818, 'number': 548}  | {'precision': 0.8351449275362319, 'recall': 0.8412408759124088, 'f1': 0.8381818181818181, 'number': 548} | 0.8469            | 0.8531         | 0.8500     | 0.9730           |
| 0.0283        | 6.0   | 108  | 0.0987          | {'precision': 0.8756855575868373, 'recall': 0.8740875912408759, 'f1': 0.8748858447488584, 'number': 548} | {'precision': 0.8555758683729433, 'recall': 0.8540145985401459, 'f1': 0.8547945205479452, 'number': 548} | 0.8656            | 0.8641         | 0.8648     | 0.9761           |
| 0.0205        | 7.0   | 126  | 0.0988          | {'precision': 0.8646209386281588, 'recall': 0.8740875912408759, 'f1': 0.8693284936479129, 'number': 548} | {'precision': 0.8375451263537906, 'recall': 0.8467153284671532, 'f1': 0.8421052631578947, 'number': 548} | 0.8511            | 0.8604         | 0.8557     | 0.9742           |
| 0.0141        | 8.0   | 144  | 0.1086          | {'precision': 0.8706739526411658, 'recall': 0.8722627737226277, 'f1': 0.8714676390154968, 'number': 548} | {'precision': 0.8542805100182149, 'recall': 0.8558394160583942, 'f1': 0.8550592525068369, 'number': 548} | 0.8625            | 0.8641         | 0.8633     | 0.9753           |
| 0.012         | 9.0   | 162  | 0.1076          | {'precision': 0.8811700182815356, 'recall': 0.8795620437956204, 'f1': 0.8803652968036529, 'number': 548} | {'precision': 0.8592321755027422, 'recall': 0.8576642335766423, 'f1': 0.8584474885844748, 'number': 548} | 0.8702            | 0.8686         | 0.8694     | 0.9773           |
| 0.0104        | 10.0  | 180  | 0.1089          | {'precision': 0.8788990825688073, 'recall': 0.8740875912408759, 'f1': 0.8764867337602928, 'number': 548} | {'precision': 0.8568807339449541, 'recall': 0.8521897810218978, 'f1': 0.8545288197621226, 'number': 548} | 0.8679            | 0.8631         | 0.8655     | 0.9764           |
| 0.0101        | 11.0  | 198  | 0.1111          | {'precision': 0.8813868613138686, 'recall': 0.8813868613138686, 'f1': 0.8813868613138687, 'number': 548} | {'precision': 0.8594890510948905, 'recall': 0.8594890510948905, 'f1': 0.8594890510948904, 'number': 548} | 0.8704            | 0.8704         | 0.8704     | 0.9761           |
| 0.008         | 12.0  | 216  | 0.1049          | {'precision': 0.886654478976234, 'recall': 0.885036496350365, 'f1': 0.8858447488584474, 'number': 548}   | {'precision': 0.8665447897623401, 'recall': 0.864963503649635, 'f1': 0.8657534246575344, 'number': 548}  | 0.8766            | 0.875          | 0.8758     | 0.9778           |
| 0.0072        | 13.0  | 234  | 0.1094          | {'precision': 0.8775137111517367, 'recall': 0.8759124087591241, 'f1': 0.8767123287671232, 'number': 548} | {'precision': 0.8519195612431444, 'recall': 0.8503649635036497, 'f1': 0.8511415525114155, 'number': 548} | 0.8647            | 0.8631         | 0.8639     | 0.9759           |
| 0.007         | 14.0  | 252  | 0.1117          | {'precision': 0.8777372262773723, 'recall': 0.8777372262773723, 'f1': 0.8777372262773723, 'number': 548} | {'precision': 0.8540145985401459, 'recall': 0.8540145985401459, 'f1': 0.8540145985401459, 'number': 548} | 0.8659            | 0.8659         | 0.8659     | 0.9764           |
| 0.0084        | 15.0  | 270  | 0.1118          | {'precision': 0.8832116788321168, 'recall': 0.8832116788321168, 'f1': 0.8832116788321168, 'number': 548} | {'precision': 0.8594890510948905, 'recall': 0.8594890510948905, 'f1': 0.8594890510948904, 'number': 548} | 0.8714            | 0.8714         | 0.8714     | 0.9773           |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0