File size: 5,653 Bytes
312c785
 
ca68712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3109e0
ca68712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312c785
accfc54
ca68712
f288cec
0c11514
f288cec
00ae5f4
c3109e0
00ae5f4
75ab5d4
 
 
0c11514
00ae5f4
 
c3109e0
00ae5f4
 
962e673
00ae5f4
 
9c1b2c8
0c11514
9c1b2c8
c3109e0
0c11514
94326fc
 
962e673
9c1b2c8
00ae5f4
9c1b2c8
962e673
8ba83f6
962e673
c3abc14
962e673
c3abc14
00ae5f4
 
dff1dd8
962e673
c3abc14
00ae5f4
fd7154c
00ae5f4
c3abc14
bb95764
ac0af25
 
 
 
 
 
 
 
 
 
 
 
 
 
2b9a070
 
00ae5f4
 
fd7154c
00ae5f4
fd7154c
 
 
 
 
 
 
 
 
 
4738475
dde617f
59e1dfb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
license: cc-by-nc-4.0
language:
- ab
- af
- am
- ar
- as
- az
- ba
- be
- bn
- bo
- bs
- br
- bg
- ca
- cs
- cv
- cy
- da
- de
- dv
- el
- en
- eo
- et
- eu
- ee
- fo
- fa
- tl
- fi
- fr
- fy
- ga
- gl
- gv
- gn
- gu
- ht
- ha
- he
- hi
- hr
- hu
- hy
- ig
- ia
- id
- is
- it
- jv
- ja
- kn
- ka
- kk
- km
- rw
- ky
- ku
- ko
- lo
- la
- lv
- ln
- lt
- lb
- lg
- ml
- mr
- mk
- mg
- mt
- mn
- mi
- ms
- my
- ne
- nl
- nn
- no
- oc
- or
- pa
- pl
- pt
- ps
- ro
- ru
- sa
- si
- sl
- sk
- sn
- sd
- so
- st
- es
- sq
- sc
- sr
- su
- sw
- sv
- ta
- tt
- te
- tg
- th
- tn
- tk
- tr
- tw
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- yo
- zh
---
**This repository contains the best mHuBERT-147 pre-trained model.**


**MODEL DETAILS:** 3rd iteration, K=1000, HuBERT base architecture (95M parameters), 147 languages.

# Table of Contents:

1. [Summary](https://huggingface.co/utter-project/mHuBERT-147#mhubert-147-models)
2. [Training Data and Code](https://huggingface.co/utter-project/mHuBERT-147#training)
3. [ML-SUPERB Scores](https://huggingface.co/utter-project/mHuBERT-147#ml-superb-scores)
4. [Languages and Datasets](https://huggingface.co/utter-project/mHuBERT-147#languages-and-datasets)
6. [Citing and Funding Information](https://huggingface.co/utter-project/mHuBERT-147#citing-and-funding-information)
   
# mHuBERT-147 models

mHuBERT-147 are compact and competitive multilingual HuBERT models trained on 90K hours of open-license data in 147 languages. 
Different from *traditional* HuBERTs, mHuBERT-147 models are trained using faiss IVF discrete speech units. 
Training employs a two-level language, data source up-sampling during training. See more information in [our paper](https://arxiv.org/pdf/2406.06371).

**This repository contains:**
* Fairseq checkpoint (original);
* HuggingFace checkpoint (conversion using transformers library);
* Faiss index for continuous pre-training (OPQ16_64,IVF1000_HNSW32,PQ16x4fsr).

**Related Models:**
* [2nd Iteration mHuBERT-147](https://huggingface.co/utter-project/mHuBERT-147-base-2nd-iter)
* [1st Iteration mHuBERT-147](https://huggingface.co/utter-project/mHuBERT-147-base-1st-iter)
* [CommonVoice Prototype (12 languages)](https://huggingface.co/utter-project/hutter-12-3rd-base)

# Training

* **[Manifest list available here.](https://huggingface.co/utter-project/mHuBERT-147-base-3rd-iter/tree/main/manifest)** Please note that since training, there were CommonVoice removal requests. This means that some of the listed files are no longer available.

* **[Fairseq fork](https://github.com/utter-project/fairseq)** contains the scripts for training with multilingual batching with two-level up-sampling.

* **[Scripts for pre-processing/faiss clustering available here.](https://github.com/utter-project/mHuBERT-147-scripts)** 

# ML-SUPERB Scores

mHubert-147 reaches second and first position in the 10min and 1h leaderboards respectively. We achieve new SOTA scores for three LID tasks.
See more information in [our paper](https://arxiv.org/pdf/2406.06371).

![image/png](https://cdn-uploads.huggingface.co/production/uploads/62262e19d36494a6f743a28d/chXjExnWc3rhhtdsyiU-W.png)

# Languages and Datasets

**Datasets:** For ASR/ST/TTS datasets, only train set is used.
* [Aishell](https://www.openslr.org/33/) and [AISHELL-3](https://www.openslr.org/93/)
* [BibleTTS](https://www.openslr.org/129/)
* [ClovaCall](https://github.com/clovaai/ClovaCall)
* [CommonVoice v11](https://commonvoice.mozilla.org/en/datasets)
* Google TTS data: [Javanese](https://www.openslr.org/41/), [Khmer](https://www.openslr.org/42/), [Nepali](https://www.openslr.org/43/), [Sundanese](https://www.openslr.org/44/), [South African Languages](https://www.openslr.org/32/), [Bengali Languages](https://www.openslr.org/37/)  
* IISc-MILE: [Tamil](https://www.openslr.org/127/), [Kannada](https://www.openslr.org/126/)
* [Japanese Versatile Speech](https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_corpus) 
* [Kokoro](https://github.com/kaiidams/Kokoro-Speech-Dataset)
* [Kosp2e](https://github.com/warnikchow/kosp2e)
* Media Speech: [Turkish Only](https://www.openslr.org/108/)
* [Multilingual LibriSpeech](https://www.openslr.org/94/)
* [Samrómur](https://www.openslr.org/128/)
* [THCHS-30](https://www.openslr.org/18/) and [THUYG-20](https://www.openslr.org/22/)
* [VoxLingua107](https://bark.phon.ioc.ee/voxlingua107/)
* [VoxPopuli](https://github.com/facebookresearch/voxpopuli/)

**Languages present not indexed by Huggingface:** Asturian (ast), Basaa (bas), Cebuano (ceb), Central Kurdish/Sorani (ckb), Hakha Chin (cnh), Hawaiian (haw), Upper Sorbian (hsb) Kabyle (kab), Moksha (mdf), Meadow Mari (mhr), Hill Mari (mrj), Erzya (myv), Taiwanese Hokkien (nan-tw), Sursilvan (rm-sursilv), Vallader (rm-vallader), Sakha (sah), Santali (sat), Scots (sco), Saraiki (skr), Tigre (tig), Tok Pisin (tpi), Akwapen Twi (tw-akuapem), Asante Twi (tw-asante), Votic (vot), Waray (war), Cantonese (yue).


# Citing and Funding Information

```
@inproceedings{boito2024mhubert,
author={Marcely Zanon Boito, Vivek Iyer, Nikolaos Lagos, Laurent Besacier, Ioan Calapodescu},
title={{mHuBERT-147: A Compact Multilingual HuBERT Model}},
year=2024,
booktitle={Interspeech 2024},
}
```

<img src="https://cdn-uploads.huggingface.co/production/uploads/62262e19d36494a6f743a28d/HbzC1C-uHe25ewTy2wyoK.png" width=7% height=7%> 
This is an output of the European Project UTTER (Unified Transcription and Translation for Extended Reality) funded by European Union’s Horizon Europe Research and Innovation programme under grant agreement number 101070631.

For more information please visit https://he-utter.eu/