--- language: - en library_name: peft pipeline_tag: text-generation tags: - Mistral license: llama2 model-index: - name: SpeechlessCoder results: - task: type: text-generation dataset: type: openai_humaneval name: HumanEval metrics: - name: pass@1 type: pass@1 value: 0.0 verified: false --- # Mistral-7B-OpenOrca-lora-merged **This is a test.** This is a regenerated model that combines the base model Mistral-7B-v0.1 with the LoRA model [Mistral-7B-OpenOrca-lora](https://huggingface.co/uukuguy/Mistral-7B-OpenOrca-lora). This LoRA model is extracted from the efficient parameter fine-tuned model ([Mistral-7B-OpenOra](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca)), and now it needs to be verified whether this LoRA model can achieve comparable performance with the original model. The final goal is to create a toolkit that can simultaneously load multiple LoRA modules, and automatically switch to the appropriate combination of LoRA modules based on user queries to generate the best answer. The source code is [here](https://github.com/uukuguy/multi_loras) ## Mistral-7B-OpenOrca - Extract lora model [Mistral-7B-OpenOrca-lora](https://huggingface.co/uukuguy/Mistral-7B-OpenOrca-lora) from [Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca); - Merge the base model [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) with lora model to [Mistral-7B-OpenOrca-lora-merged](https://huggingface.co/uukuguy/Mistral-7B-OpenOrca-lora-merged) - LLM Evaluation ... ### Local Test | | ARC_acc_norm (25-shot) | HellaSwag_acc_norm (10-shot) | MMLU_acc (5-shot) | TruthfulQA_mc2 (0-shot) | GSM8K_acc (8-shot) | Open LLM Score | | ------ | ------ | ------ | ------ | ------ | ------ | ------ | | Mistral-7B-OpenOrca | **71** | 83 | 61.42 | 45 | 40 | 65.11 | | **r=256** | 68 | **84** | **64.28** | 46.953 | **41** | **65.81** | | r=64 | 67 | 84 | 64.26 | **47.32** | **41** | 65.65 | | *r=16* | *65* | *83* | *62.84* | *46.95* | *38* | *64.45* | ### Open LLM Leaderboard | | ARC_acc_norm (25-shot) | HellaSwag_acc_norm (10-shot) | MMLU_acc (5-shot) | TruthfulQA_mc2 (0-shot) | Open LLM Score | | ------ | ------ | ------ | ------ | ------ | ------ | | Mistral-7B-SlimOrca | 62.54 | 83.86 | **62.77** | **54.23** | **65.85** | | Mistral-7B-OpenOrca | **64.08** | **83.99** | 62.24 | 53.05 | 65.84 | ## lm-evaluation-harness [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Metric | Mistral-7B-OpenOrca | Mistral-7B-OpenOrca-lora| Mistral-7B-OpenOrca-lora-merged | | --- | --- |--- | --- | | ARC | 64.08 | | | | HellaSwag | 83.99 | | | | MMLU | 62.24 | | | | TruthfulQA | 53.05 | | | | Average | 65.84 | | | ## HumanEval | Metric | Mistral-7B-OpenOrca | Mistral-7B-OpenOrca-lora| Mistral-7B-OpenOrca-lora-merged | | --- | --- | --- | --- | | humaneval-python | 35.976 | | | ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0