File size: 24,137 Bytes
cddfe4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
21-03-31 00:41:35.097 - INFO: name: 4x_UniversalUpscalerV2-Neutral
use_tb_logger: True
model: srragan
scale: 4
gpu_ids: [0]
use_amp: True
use_swa: True
datasets:[
train:[
name: DIV2K
mode: LRHRC
dataroot_HR: ['..\\datasets\\train\\hr\\hrRealism\\Original', '..\\datasets\\train\\hr\\hrRealism\\Point']
dataroot_LR: ['..\\datasets\\train\\lr\\lrUniversal\\lrBox', '..\\datasets\\train\\lr\\lrUniversal\\lrPoint']
subset_file: None
use_shuffle: True
znorm: False
n_workers: 4
batch_size: 4
virtual_batch_size: 4
HR_size: 128
image_channels: 3
dataroot_kernels: ../training/kernels/results/
lr_downscale: True
lr_downscale_types: [1, 2, 777]
use_flip: True
use_rot: True
hr_rrot: False
lr_blur: False
lr_blur_types: ['gaussian', 'clean', 'clean', 'clean']
noise_data: ../noise_patches/normal/
lr_noise: False
lr_noise_types: ['JPEG', 'clean', 'clean', 'clean', 'clean']
lr_noise2: False
lr_noise_types2: ['dither', 'dither', 'clean', 'clean']
hr_noise: False
hr_noise_types: ['gaussian', 'clean', 'clean', 'clean', 'clean']
phase: train
scale: 4
data_type: img
]
val:[
name: val_images
mode: LRHROTF
dataroot_HR: ..\datasets\val\hr\hrUniversal
dataroot_LR: ..\datasets\val\lr\lrUniversal\Neutral
znorm: False
lr_downscale: False
lr_downscale_types: [1, 2]
phase: val
scale: 4
data_type: img
]
]
path:[
strict: False
root: C:\nn\BasicSR
pretrain_model_G: ..\experiments\pretrained_models\RRDB_ESRGAN_x4.pth
resume_state: ..\experiments\4x_UniversalUpscalerV2-Neutral\training_state\112000.state
experiments_root: C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Neutral
models: C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Neutral\models
training_state: C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Neutral\training_state
log: C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Neutral
val_images: C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Neutral\val_images
]
network_G:[
strict: False
which_model_G: RRDB_net
norm_type: None
mode: CNA
nf: 64
nb: 23
nr: 3
in_nc: 3
out_nc: 3
gc: 32
group: 1
convtype: Conv2D
net_act: leakyrelu
gaussian: True
plus: False
scale: 4
]
network_D:[
strict: True
which_model_D: multiscale
norm_type: batch
act_type: leakyrelu
mode: CNA
nf: 64
in_nc: 3
nlayer: 3
num_D: 3
]
train:[
lr_G: 0.0001
weight_decay_G: 0
beta1_G: 0.9
lr_D: 0.0001
weight_decay_D: 0
beta1_D: 0.9
lr_scheme: MultiStepLR
lr_gamma: 0.5
swa_start_iter: 70000
swa_lr: 0.0001
swa_anneal_epochs: 10
swa_anneal_strategy: cos
pixel_criterion: l1
pixel_weight: 0.1
cx_weight: 0.5
cx_type: contextual
cx_vgg_layers:[
conv_3_2: 1
conv_3_1: 1
conv_4_2: 1
conv_4_1: 1
conv_5_2: 1
conv_5_1: 1
]
ssim_type: ms-ssim
ssim_weight: 1
gan_type: vanilla
gan_weight: 0.009
manual_seed: 0
niter: 500000.0
val_freq: 1000
metrics: psnr,ssim,lpips
overwrite_val_imgs: None
val_comparison: None
lr_steps: [50000, 100000, 200000, 300000]
]
logger:[
print_freq: 200
save_checkpoint_freq: 1000
overwrite_chkp: False
]
is_train: True
21-03-31 00:41:35.200 - INFO: Random seed: 0
21-03-31 00:41:36.716 - INFO: Set [resume_state] to ..\experiments\4x_UniversalUpscalerV2-Neutral\training_state\112000.state
21-03-31 00:41:36.716 - INFO: Resuming training from epoch: 956, iter: 112000.
21-03-31 00:41:36.716 - WARNING: pretrain_model paths will be ignored when resuming training from a .state file.
21-03-31 00:41:36.716 - INFO: Set [pretrain_model_G] to C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Neutral\models\112000_G.pth
21-03-31 00:41:36.716 - INFO: Set [pretrain_model_D] to C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Neutral\models\112000_D.pth
21-03-31 00:41:36.734 - INFO: Dataset [LRHRDataset - DIV2K] is created.
21-03-31 00:41:36.734 - INFO: Number of train images: 470, iters: 118
21-03-31 00:41:36.735 - INFO: Total epochs needed: 4238 for iters 500,000
21-03-31 00:41:36.735 - INFO: Dataset [LRHRDataset - val_images] is created.
21-03-31 00:41:36.735 - INFO: Number of val images in [val_images]: 3
21-03-31 00:41:37.012 - INFO: AMP library available
21-03-31 00:41:37.143 - INFO: Initialization method [kaiming]
21-03-31 00:41:37.353 - INFO: Initialization method [kaiming]
21-03-31 00:41:37.409 - INFO: Loading pretrained model for G [C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Neutral\models\112000_G.pth] ...
21-03-31 00:41:37.649 - INFO: Loading pretrained model for D [C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Neutral\models\112000_D.pth] ...
21-03-31 00:41:38.673 - INFO: SWA enabled. Starting on iter: 70000, lr: 0.0001
21-03-31 00:41:38.675 - INFO: AMP enabled
21-03-31 00:41:38.684 - INFO: Network G structure: DataParallel - RRDBNet, with parameters: 16,697,987
21-03-31 00:41:38.685 - INFO: Network D structure: DataParallel - MultiscaleDiscriminator, with parameters: 8,296,899
21-03-31 00:41:38.685 - INFO: Model [SRRaGANModel] is created.
21-03-31 00:41:38.766 - INFO: Start training from epoch: 956, iter: 112000
21-03-31 00:42:50.337 - INFO: End of epoch 956 / 4238 Time Taken: 71.5706 sec
21-03-31 00:43:48.472 - INFO: <epoch:957, iter: 112,200, lr:1.000e-04, t:-1.0000s, td:0.0365s, eta:0.0000h> pix-l1: 2.7462e-03 contextual: 4.6543e+00 l_g_gan: 1.7021e-01 ms-ssim: 9.1447e-02 l_d_real: 4.4154e-01 l_d_fake: 4.4055e-01 D_real: 1.2344e+01 D_fake: -5.8643e-01
21-03-31 00:44:11.223 - INFO: End of epoch 957 / 4238 Time Taken: 80.8861 sec
21-03-31 00:45:31.848 - INFO: End of epoch 958 / 4238 Time Taken: 80.6250 sec
21-03-31 00:46:07.679 - INFO: <epoch:959, iter: 112,400, lr:1.000e-04, t:-1.0000s, td:0.0371s, eta:0.0000h> pix-l1: 4.3990e-03 contextual: 3.7370e+00 l_g_gan: 1.3807e-01 ms-ssim: 7.9429e-02 l_d_real: 3.7589e-01 l_d_fake: 3.7934e-01 D_real: -2.2031e+00 D_fake: -1.1148e+01
21-03-31 00:46:52.641 - INFO: End of epoch 959 / 4238 Time Taken: 80.7930 sec
21-03-31 00:48:11.601 - INFO: End of epoch 960 / 4238 Time Taken: 78.9601 sec
21-03-31 00:48:22.870 - INFO: <epoch:961, iter: 112,600, lr:1.000e-04, t:139.2078s, td:0.0366s, eta:14980.3069h> pix-l1: 7.0772e-03 contextual: 4.6113e+00 l_g_gan: 4.3736e-02 ms-ssim: 1.2085e-01 l_d_real: 1.6328e+00 l_d_fake: 1.6297e+00 D_real: 4.7031e+00 D_fake: 1.4570e+00
21-03-31 00:49:16.002 - INFO: End of epoch 961 / 4238 Time Taken: 64.4010 sec
21-03-31 00:50:10.217 - INFO: <epoch:962, iter: 112,800, lr:1.000e-04, t:135.1907s, td:0.0180s, eta:14540.5115h> pix-l1: 3.5628e-03 contextual: 3.2906e+00 l_g_gan: 1.4167e-01 ms-ssim: 5.3947e-02 l_d_real: 2.6047e-01 l_d_fake: 2.6046e-01 D_real: -6.6680e+00 D_fake: -1.5773e+01
21-03-31 00:50:20.307 - INFO: End of epoch 962 / 4238 Time Taken: 64.3044 sec
21-03-31 00:51:24.767 - INFO: End of epoch 963 / 4238 Time Taken: 64.4600 sec
21-03-31 00:52:01.484 - INFO: <epoch:964, iter: 113,000, lr:1.000e-04, t:107.3469s, td:0.0362s, eta:11539.7926h> pix-l1: 2.5078e-03 contextual: 2.1749e+00 l_g_gan: 3.1561e-02 ms-ssim: 3.0721e-02 l_d_real: 2.0302e+00 l_d_fake: 2.0325e+00 D_real: -1.0172e+01 D_fake: -1.2508e+01
21-03-31 00:52:02.335 - INFO: Models and training states saved.
21-03-31 00:52:10.432 - INFO: # Validation # PSNR: 29.774, SSIM: 0.808, LPIPS: 0.058653
21-03-31 00:52:10.433 - INFO: <epoch:964, iter: 113,000> PSNR: 29.774, SSIM: 0.808, LPIPS: 0.058653
21-03-31 00:52:38.581 - INFO: End of epoch 964 / 4238 Time Taken: 73.8133 sec
21-03-31 00:53:44.420 - INFO: End of epoch 965 / 4238 Time Taken: 65.8385 sec
21-03-31 00:54:03.824 - INFO: <epoch:966, iter: 113,200, lr:1.000e-04, t:111.2671s, td:0.0362s, eta:11955.0309h> pix-l1: 5.4623e-03 contextual: 4.3148e+00 l_g_gan: 1.8007e-01 ms-ssim: 8.7078e-02 l_d_real: 6.2411e-01 l_d_fake: 6.2331e-01 D_real: 5.7500e+00 D_fake: -4.4844e+00
21-03-31 00:54:50.501 - INFO: End of epoch 966 / 4238 Time Taken: 66.0809 sec
21-03-31 00:55:55.325 - INFO: <epoch:967, iter: 113,400, lr:1.000e-04, t:122.3397s, td:0.0187s, eta:13137.9235h> pix-l1: 3.0308e-03 contextual: 3.3030e+00 l_g_gan: 9.1658e-02 ms-ssim: 5.0770e-02 l_d_real: 6.3275e-01 l_d_fake: 6.3530e-01 D_real: -1.2627e+00 D_fake: -5.1875e+00
21-03-31 00:55:57.752 - INFO: End of epoch 967 / 4238 Time Taken: 67.2507 sec
21-03-31 00:57:03.392 - INFO: End of epoch 968 / 4238 Time Taken: 65.6391 sec
21-03-31 00:57:48.736 - INFO: <epoch:969, iter: 113,600, lr:1.000e-04, t:111.5011s, td:0.0361s, eta:11967.7849h> pix-l1: 6.1939e-03 contextual: 4.9985e+00 l_g_gan: 1.0783e-01 ms-ssim: 1.2970e-01 l_d_real: 2.5266e-01 l_d_fake: 2.5311e-01 D_real: 8.3359e+00 D_fake: 1.6318e+00
21-03-31 00:58:09.107 - INFO: End of epoch 969 / 4238 Time Taken: 65.7147 sec
21-03-31 00:59:14.618 - INFO: End of epoch 970 / 4238 Time Taken: 65.5109 sec
21-03-31 00:59:41.888 - INFO: <epoch:971, iter: 113,800, lr:1.000e-04, t:113.4111s, td:0.0360s, eta:12166.4896h> pix-l1: 9.5749e-04 contextual: 3.4017e+00 l_g_gan: 8.2276e-02 ms-ssim: 1.4097e-02 l_d_real: 6.6051e-01 l_d_fake: 6.5912e-01 D_real: 1.6836e+00 D_fake: -4.1172e+00
21-03-31 01:00:20.227 - INFO: End of epoch 971 / 4238 Time Taken: 65.6096 sec
21-03-31 01:01:25.708 - INFO: End of epoch 972 / 4238 Time Taken: 65.4811 sec
21-03-31 01:01:35.079 - INFO: <epoch:973, iter: 114,000, lr:1.000e-04, t:113.1525s, td:0.0362s, eta:12132.4587h> pix-l1: 4.9445e-03 contextual: 4.2878e+00 l_g_gan: 4.1922e-02 ms-ssim: 1.3258e-01 l_d_real: 1.2622e+00 l_d_fake: 1.2623e+00 D_real: 4.1094e+00 D_fake: 1.2998e+00
21-03-31 01:01:35.977 - INFO: Models and training states saved.
21-03-31 01:01:41.781 - INFO: # Validation # PSNR: 29.513, SSIM: 0.79128, LPIPS: 0.057282
21-03-31 01:01:41.781 - INFO: <epoch:973, iter: 114,000> PSNR: 29.513, SSIM: 0.79128, LPIPS: 0.057282
21-03-31 01:02:37.993 - INFO: End of epoch 973 / 4238 Time Taken: 72.2845 sec
21-03-31 01:03:31.011 - INFO: <epoch:974, iter: 114,200, lr:1.000e-04, t:113.1905s, td:0.0181s, eta:12130.2537h> pix-l1: 4.0483e-03 contextual: 3.9877e+00 l_g_gan: 6.9374e-02 ms-ssim: 9.0557e-02 l_d_real: 1.2671e+00 l_d_fake: 1.2635e+00 D_real: 4.0312e+00 D_fake: -1.1191e+00
21-03-31 01:03:43.443 - INFO: End of epoch 974 / 4238 Time Taken: 65.4493 sec
21-03-31 01:04:49.054 - INFO: End of epoch 975 / 4238 Time Taken: 65.6114 sec
21-03-31 01:05:24.223 - INFO: <epoch:976, iter: 114,400, lr:1.000e-04, t:115.9318s, td:0.0362s, eta:12417.5840h> pix-l1: 3.0559e-03 contextual: 3.2674e+00 l_g_gan: 3.2522e-02 ms-ssim: 4.1667e-02 l_d_real: 2.0061e+00 l_d_fake: 1.9946e+00 D_real: -1.5719e+01 D_fake: -1.8047e+01
21-03-31 01:05:54.550 - INFO: End of epoch 976 / 4238 Time Taken: 65.4963 sec
21-03-31 01:06:58.377 - INFO: End of epoch 977 / 4238 Time Taken: 63.8257 sec
21-03-31 01:07:15.087 - INFO: <epoch:978, iter: 114,600, lr:1.000e-04, t:113.2121s, td:0.0359s, eta:12119.9858h> pix-l1: 5.8880e-03 contextual: 3.0841e+00 l_g_gan: 2.0002e-02 ms-ssim: 7.0680e-02 l_d_real: 2.9940e+00 l_d_fake: 3.0169e+00 D_real: -6.6895e-01 D_fake: -1.9072e+00
21-03-31 01:08:01.614 - INFO: End of epoch 978 / 4238 Time Taken: 63.2375 sec
21-03-31 01:09:00.447 - INFO: <epoch:979, iter: 114,800, lr:1.000e-04, t:110.8636s, td:0.0176s, eta:11862.4010h> pix-l1: 3.8509e-03 contextual: 3.1999e+00 l_g_gan: 6.2972e-02 ms-ssim: 5.1347e-02 l_d_real: 1.5776e+00 l_d_fake: 1.5755e+00 D_real: -1.2180e+01 D_fake: -1.7859e+01
21-03-31 01:09:04.808 - INFO: End of epoch 979 / 4238 Time Taken: 63.1937 sec
21-03-31 01:10:08.032 - INFO: End of epoch 980 / 4238 Time Taken: 63.2244 sec
21-03-31 01:10:49.576 - INFO: <epoch:981, iter: 115,000, lr:1.000e-04, t:105.3606s, td:0.0352s, eta:11267.7332h> pix-l1: 4.9987e-03 contextual: 3.5138e+00 l_g_gan: 5.4023e-02 ms-ssim: 1.4622e-01 l_d_real: 6.4934e-01 l_d_fake: 6.5871e-01 D_real: -2.6758e+00 D_fake: -5.6914e+00
21-03-31 01:10:50.438 - INFO: Models and training states saved.
21-03-31 01:10:56.043 - INFO: # Validation # PSNR: 29.3, SSIM: 0.79637, LPIPS: 0.053994
21-03-31 01:10:56.043 - INFO: <epoch:981, iter: 115,000> PSNR: 29.3, SSIM: 0.79637, LPIPS: 0.053994
21-03-31 01:11:17.621 - INFO: End of epoch 981 / 4238 Time Taken: 69.5881 sec
21-03-31 01:12:20.823 - INFO: End of epoch 982 / 4238 Time Taken: 63.2019 sec
21-03-31 01:12:45.099 - INFO: <epoch:983, iter: 115,200, lr:1.000e-04, t:109.1284s, td:0.0353s, eta:11664.6110h> pix-l1: 3.2534e-03 contextual: 3.0795e+00 l_g_gan: 1.6528e-01 ms-ssim: 4.9348e-02 l_d_real: 1.2074e+00 l_d_fake: 1.2104e+00 D_real: -3.0410e+00 D_fake: -1.3234e+01
21-03-31 01:13:24.004 - INFO: End of epoch 983 / 4238 Time Taken: 63.1803 sec
21-03-31 01:14:27.169 - INFO: End of epoch 984 / 4238 Time Taken: 63.1655 sec
21-03-31 01:14:34.174 - INFO: <epoch:985, iter: 115,400, lr:1.000e-04, t:115.5237s, td:0.0352s, eta:12341.7768h> pix-l1: 1.8575e-03 contextual: 2.8960e+00 l_g_gan: 6.4652e-02 ms-ssim: 3.3747e-02 l_d_real: 5.9771e-01 l_d_fake: 5.9739e-01 D_real: -2.7344e+01 D_fake: -3.1062e+01
21-03-31 01:15:30.400 - INFO: End of epoch 985 / 4238 Time Taken: 63.2311 sec
21-03-31 01:16:19.551 - INFO: <epoch:986, iter: 115,600, lr:1.000e-04, t:109.0742s, td:0.0176s, eta:11646.6991h> pix-l1: 3.2793e-03 contextual: 3.0750e+00 l_g_gan: 8.9576e-02 ms-ssim: 6.0986e-02 l_d_real: 9.7527e-01 l_d_fake: 9.7771e-01 D_real: -7.6133e+00 D_fake: -1.5547e+01
21-03-31 01:16:33.558 - INFO: End of epoch 986 / 4238 Time Taken: 63.1579 sec
21-03-31 01:17:36.707 - INFO: End of epoch 987 / 4238 Time Taken: 63.1491 sec
21-03-31 01:18:08.603 - INFO: <epoch:988, iter: 115,800, lr:1.000e-04, t:105.3771s, td:0.0352s, eta:11246.0766h> pix-l1: 5.1117e-03 contextual: 4.3469e+00 l_g_gan: 1.2121e-01 ms-ssim: 8.4865e-02 l_d_real: 7.6108e-01 l_d_fake: 7.5999e-01 D_real: 9.7266e-01 D_fake: -7.1289e+00
21-03-31 01:18:39.886 - INFO: End of epoch 988 / 4238 Time Taken: 63.1783 sec
21-03-31 01:19:43.110 - INFO: End of epoch 989 / 4238 Time Taken: 63.2244 sec
21-03-31 01:19:57.803 - INFO: <epoch:990, iter: 116,000, lr:1.000e-04, t:109.0521s, td:0.0352s, eta:11632.2281h> pix-l1: 5.0189e-03 contextual: 3.4469e+00 l_g_gan: 3.0651e-02 ms-ssim: 8.3937e-02 l_d_real: 2.1505e+00 l_d_fake: 2.1604e+00 D_real: -2.6094e+00 D_fake: -3.9844e+00
21-03-31 01:19:58.653 - INFO: Models and training states saved.
21-03-31 01:20:04.280 - INFO: # Validation # PSNR: 29.927, SSIM: 0.80531, LPIPS: 0.055359
21-03-31 01:20:04.281 - INFO: <epoch:990, iter: 116,000> PSNR: 29.927, SSIM: 0.80531, LPIPS: 0.055359
21-03-31 01:20:55.183 - INFO: End of epoch 990 / 4238 Time Taken: 72.0722 sec
21-03-31 01:22:00.252 - INFO: <epoch:991, iter: 116,200, lr:1.000e-04, t:109.2007s, td:0.0177s, eta:11642.0039h> pix-l1: 3.8012e-03 contextual: 3.5058e+00 l_g_gan: 4.2163e-02 ms-ssim: 4.8514e-02 l_d_real: 1.1358e+00 l_d_fake: 1.1265e+00 D_real: -2.9688e+00 D_fake: -4.4883e+00
21-03-31 01:22:06.685 - INFO: End of epoch 991 / 4238 Time Taken: 71.5029 sec
21-03-31 01:23:15.822 - INFO: End of epoch 992 / 4238 Time Taken: 69.1369 sec
21-03-31 01:23:57.816 - INFO: <epoch:993, iter: 116,400, lr:1.000e-04, t:122.4488s, td:0.0361s, eta:13047.5981h> pix-l1: 5.3810e-03 contextual: 6.3658e+00 l_g_gan: 1.2324e-01 ms-ssim: 1.0586e-01 l_d_real: 4.3566e-01 l_d_fake: 4.3584e-01 D_real: 1.3672e+01 D_fake: 7.7617e+00
21-03-31 01:24:22.326 - INFO: End of epoch 993 / 4238 Time Taken: 66.5035 sec
21-03-31 01:25:28.254 - INFO: End of epoch 994 / 4238 Time Taken: 65.9277 sec
21-03-31 01:25:51.165 - INFO: <epoch:995, iter: 116,600, lr:1.000e-04, t:117.5644s, td:0.0363s, eta:12520.6127h> pix-l1: 5.3021e-03 contextual: 4.0548e+00 l_g_gan: 9.7859e-02 ms-ssim: 7.5979e-02 l_d_real: 2.8488e-01 l_d_fake: 2.8375e-01 D_real: 2.3672e+00 D_fake: -2.6562e+00
21-03-31 01:26:34.785 - INFO: End of epoch 995 / 4238 Time Taken: 66.5307 sec
21-03-31 01:27:39.237 - INFO: End of epoch 996 / 4238 Time Taken: 64.4522 sec
21-03-31 01:27:44.328 - INFO: <epoch:997, iter: 116,800, lr:1.000e-04, t:113.3485s, td:0.0360s, eta:12065.3224h> pix-l1: 4.2459e-03 contextual: 3.8040e+00 l_g_gan: 1.9264e-01 ms-ssim: 1.0219e-01 l_d_real: 6.6371e-01 l_d_fake: 6.6566e-01 D_real: 1.9500e+01 D_fake: 6.2422e+00
21-03-31 01:28:44.135 - INFO: End of epoch 997 / 4238 Time Taken: 64.8980 sec
21-03-31 01:29:33.637 - INFO: <epoch:998, iter: 117,000, lr:1.000e-04, t:113.1631s, td:0.0183s, eta:12039.2981h> pix-l1: 3.0717e-03 contextual: 2.9970e+00 l_g_gan: 7.8125e-02 ms-ssim: 4.4347e-02 l_d_real: 1.4769e+00 l_d_fake: 1.4739e+00 D_real: 6.5391e+00 D_fake: 4.7485e-01
21-03-31 01:29:34.537 - INFO: Models and training states saved.
21-03-31 01:29:40.415 - INFO: # Validation # PSNR: 29.655, SSIM: 0.79655, LPIPS: 0.05347
21-03-31 01:29:40.416 - INFO: <epoch:998, iter: 117,000> PSNR: 29.655, SSIM: 0.79655, LPIPS: 0.05347
21-03-31 01:29:57.602 - INFO: End of epoch 998 / 4238 Time Taken: 73.4661 sec
21-03-31 01:31:05.073 - INFO: End of epoch 999 / 4238 Time Taken: 67.4707 sec
21-03-31 01:31:35.308 - INFO: <epoch:1000, iter: 117,200, lr:1.000e-04, t:109.3083s, td:0.0359s, eta:11623.1209h> pix-l1: 5.2767e-03 contextual: 2.7483e+00 l_g_gan: 8.1369e-02 ms-ssim: 6.8222e-02 l_d_real: 4.9934e-01 l_d_fake: 4.9184e-01 D_real: 3.7539e+00 D_fake: -1.7412e+00
21-03-31 01:32:09.123 - INFO: End of epoch 1000 / 4238 Time Taken: 64.0498 sec
21-03-31 01:33:15.269 - INFO: End of epoch 1001 / 4238 Time Taken: 66.1459 sec
21-03-31 01:33:28.036 - INFO: <epoch:1002, iter: 117,400, lr:1.000e-04, t:121.6717s, td:0.0365s, eta:12930.9946h> pix-l1: 4.3924e-03 contextual: 4.5448e+00 l_g_gan: 1.3113e-01 ms-ssim: 9.6581e-02 l_d_real: 7.7344e-01 l_d_fake: 7.6842e-01 D_real: 1.9500e+01 D_fake: 1.0227e+01
21-03-31 01:34:21.615 - INFO: End of epoch 1002 / 4238 Time Taken: 66.3454 sec
21-03-31 01:35:18.883 - INFO: <epoch:1003, iter: 117,600, lr:1.000e-04, t:112.7280s, td:0.0180s, eta:11974.2169h> pix-l1: 7.7647e-03 contextual: 5.6921e+00 l_g_gan: 4.8571e-02 ms-ssim: 1.2491e-01 l_d_real: 1.0766e+00 l_d_fake: 1.0767e+00 D_real: 1.9328e+01 D_fake: 1.8422e+01
21-03-31 01:35:27.370 - INFO: End of epoch 1003 / 4238 Time Taken: 65.7544 sec
21-03-31 01:36:32.449 - INFO: End of epoch 1004 / 4238 Time Taken: 65.0795 sec
21-03-31 01:37:11.322 - INFO: <epoch:1005, iter: 117,800, lr:1.000e-04, t:110.8468s, td:0.0353s, eta:11768.2355h> pix-l1: 5.5476e-03 contextual: 4.0668e+00 l_g_gan: 1.0018e-01 ms-ssim: 9.6983e-02 l_d_real: 1.6872e-01 l_d_fake: 1.6860e-01 D_real: 2.5938e+00 D_fake: -3.3340e+00
21-03-31 01:37:40.492 - INFO: End of epoch 1005 / 4238 Time Taken: 68.0430 sec
21-03-31 01:38:46.520 - INFO: End of epoch 1006 / 4238 Time Taken: 66.0269 sec
21-03-31 01:39:08.624 - INFO: <epoch:1007, iter: 118,000, lr:1.000e-04, t:112.4387s, td:0.0362s, eta:11930.9989h> pix-l1: 2.8886e-03 contextual: 5.2334e+00 l_g_gan: 1.2686e-01 ms-ssim: 6.6982e-02 l_d_real: 1.0275e+00 l_d_fake: 1.0268e+00 D_real: 1.2961e+01 D_fake: 2.9395e+00
21-03-31 01:39:09.481 - INFO: Models and training states saved.
21-03-31 01:39:15.303 - INFO: # Validation # PSNR: 30.286, SSIM: 0.81709, LPIPS: 0.059253
21-03-31 01:39:15.303 - INFO: <epoch:1007, iter: 118,000> PSNR: 30.286, SSIM: 0.81709, LPIPS: 0.059253
21-03-31 01:39:59.584 - INFO: End of epoch 1007 / 4238 Time Taken: 73.0638 sec
21-03-31 01:41:04.471 - INFO: <epoch:1008, iter: 118,200, lr:1.000e-04, t:117.3020s, td:0.0177s, eta:12440.5310h> pix-l1: 2.9206e-03 contextual: 2.7008e+00 l_g_gan: 3.3231e-02 ms-ssim: 4.0862e-02 l_d_real: 1.6800e+00 l_d_fake: 1.6538e+00 D_real: -5.7656e+00 D_fake: -7.5273e+00
21-03-31 01:41:05.320 - INFO: End of epoch 1008 / 4238 Time Taken: 65.7353 sec
21-03-31 01:42:10.660 - INFO: End of epoch 1009 / 4238 Time Taken: 65.3396 sec
21-03-31 01:42:58.155 - INFO: <epoch:1010, iter: 118,400, lr:1.000e-04, t:115.8473s, td:0.0360s, eta:12279.8093h> pix-l1: 3.8860e-03 contextual: 2.7161e+00 l_g_gan: 5.3138e-02 ms-ssim: 5.1804e-02 l_d_real: 9.7692e-01 l_d_fake: 9.7351e-01 D_real: -5.8594e+00 D_fake: -9.3047e+00
21-03-31 01:43:18.277 - INFO: End of epoch 1010 / 4238 Time Taken: 67.6162 sec
21-03-31 01:44:25.240 - INFO: End of epoch 1011 / 4238 Time Taken: 66.9628 sec
21-03-31 01:44:54.503 - INFO: <epoch:1012, iter: 118,600, lr:1.000e-04, t:113.6846s, td:0.0359s, eta:12044.2496h> pix-l1: 2.6418e-03 contextual: 2.5073e+00 l_g_gan: 2.5861e-02 ms-ssim: 5.6070e-02 l_d_real: 2.4496e+00 l_d_fake: 2.4408e+00 D_real: -8.2422e+00 D_fake: -9.3672e+00
21-03-31 01:45:31.268 - INFO: End of epoch 1012 / 4238 Time Taken: 66.0283 sec
21-03-31 01:46:35.128 - INFO: End of epoch 1013 / 4238 Time Taken: 63.8593 sec
21-03-31 01:46:45.854 - INFO: <epoch:1014, iter: 118,800, lr:1.000e-04, t:116.3468s, td:0.0354s, eta:12319.8341h> pix-l1: 2.4760e-03 contextual: 3.5942e+00 l_g_gan: 3.9821e-02 ms-ssim: 6.6304e-02 l_d_real: 1.3798e+00 l_d_fake: 1.3807e+00 D_real: 2.3340e+00 D_fake: -2.5098e-01
21-03-31 01:47:40.615 - INFO: End of epoch 1014 / 4238 Time Taken: 65.4873 sec
21-03-31 01:48:34.149 - INFO: <epoch:1015, iter: 119,000, lr:1.000e-04, t:111.3511s, td:0.0177s, eta:11784.6552h> pix-l1: 3.8106e-03 contextual: 2.6774e+00 l_g_gan: 8.2260e-02 ms-ssim: 4.7574e-02 l_d_real: 1.3865e+00 l_d_fake: 1.3900e+00 D_real: 9.3164e-01 D_fake: -6.6836e+00
21-03-31 01:48:35.023 - INFO: Models and training states saved.
21-03-31 01:48:40.715 - INFO: # Validation # PSNR: 29.884, SSIM: 0.80041, LPIPS: 0.054134
21-03-31 01:48:40.715 - INFO: <epoch:1015, iter: 119,000> PSNR: 29.884, SSIM: 0.80041, LPIPS: 0.054134
21-03-31 01:48:51.577 - INFO: End of epoch 1015 / 4238 Time Taken: 70.9620 sec
21-03-31 01:49:57.858 - INFO: End of epoch 1016 / 4238 Time Taken: 66.2798 sec
21-03-31 01:50:33.607 - INFO: <epoch:1017, iter: 119,200, lr:1.000e-04, t:108.2956s, td:0.0357s, eta:11455.2652h> pix-l1: 5.7705e-03 contextual: 4.3616e+00 l_g_gan: 6.7388e-02 ms-ssim: 7.7683e-02 l_d_real: 7.7912e-01 l_d_fake: 7.8045e-01 D_real: 6.8652e-01 D_fake: -4.3945e+00
21-03-31 01:51:03.506 - INFO: End of epoch 1017 / 4238 Time Taken: 65.6477 sec
21-03-31 01:52:09.358 - INFO: End of epoch 1018 / 4238 Time Taken: 65.8522 sec
21-03-31 01:52:28.131 - INFO: <epoch:1019, iter: 119,400, lr:1.000e-04, t:119.4573s, td:0.0358s, eta:12629.2865h> pix-l1: 4.5988e-03 contextual: 2.4511e+00 l_g_gan: 9.3267e-02 ms-ssim: 5.5621e-02 l_d_real: 1.1682e+00 l_d_fake: 1.1681e+00 D_real: -5.3281e+00 D_fake: -1.2438e+01
21-03-31 01:53:16.338 - INFO: End of epoch 1019 / 4238 Time Taken: 66.9795 sec
21-03-31 01:54:21.325 - INFO: <epoch:1020, iter: 119,600, lr:1.000e-04, t:114.5246s, td:0.0177s, eta:12101.4369h> pix-l1: 5.4134e-03 contextual: 3.5361e+00 l_g_gan: 1.7789e-01 ms-ssim: 7.4969e-02 l_d_real: 1.0453e+00 l_d_fake: 1.0463e+00 D_real: 1.0148e+01 D_fake: -1.1973e+00
21-03-31 01:54:24.211 - INFO: End of epoch 1020 / 4238 Time Taken: 67.8729 sec
21-03-31 01:55:30.614 - INFO: End of epoch 1021 / 4238 Time Taken: 66.4037 sec
21-03-31 01:56:15.013 - INFO: <epoch:1022, iter: 119,800, lr:1.000e-04, t:113.1936s, td:0.0363s, eta:11954.4988h> pix-l1: 3.1832e-03 contextual: 3.1580e+00 l_g_gan: 1.1719e-01 ms-ssim: 4.3285e-02 l_d_real: 7.3359e-01 l_d_fake: 7.3189e-01 D_real: -5.5352e+00 D_fake: -1.5984e+01
21-03-31 01:56:35.267 - INFO: End of epoch 1022 / 4238 Time Taken: 64.6519 sec
21-03-31 01:57:40.618 - INFO: End of epoch 1023 / 4238 Time Taken: 65.3509 sec
21-03-31 01:58:08.225 - INFO: <epoch:1024, iter: 120,000, lr:1.000e-04, t:113.6886s, td:0.0359s, eta:12000.4665h> pix-l1: 3.8833e-03 contextual: 4.9053e+00 l_g_gan: 2.0196e-01 ms-ssim: 8.7545e-02 l_d_real: 8.2106e-01 l_d_fake: 8.2186e-01 D_real: 8.6641e+00 D_fake: -5.1641e+00
21-03-31 01:58:09.104 - INFO: Models and training states saved.
21-03-31 01:58:14.891 - INFO: # Validation # PSNR: 29.762, SSIM: 0.79777, LPIPS: 0.056571
21-03-31 01:58:14.891 - INFO: <epoch:1024, iter: 120,000> PSNR: 29.762, SSIM: 0.79777, LPIPS: 0.056571
21-03-31 01:58:20.579 - INFO: Training interrupted. Latest models and training states saved.
|