File size: 22,050 Bytes
cddfe4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
21-03-30 20:30:19.118 - INFO: name: 4x_UniversalUpscalerV2-Sharp
use_tb_logger: True
model: srragan
scale: 4
gpu_ids: [0]
use_amp: True
use_swa: True
datasets:[
train:[
name: DIV2K
mode: LRHRC
dataroot_HR: ['..\\datasets\\train\\hr\\hrRealism\\Original', '..\\datasets\\train\\hr\\hrRealism\\Point']
dataroot_LR: ['..\\datasets\\train\\lr\\lrUniversal\\lrHermite', '..\\datasets\\train\\lr\\lrUniversal\\lrPoint']
subset_file: None
use_shuffle: True
znorm: False
n_workers: 4
batch_size: 4
virtual_batch_size: 4
HR_size: 128
image_channels: 3
dataroot_kernels: ../training/kernels/results/
lr_downscale: True
lr_downscale_types: [1, 2, 777]
use_flip: True
use_rot: True
hr_rrot: False
lr_blur: False
lr_blur_types: ['gaussian', 'clean', 'clean', 'clean']
noise_data: ../noise_patches/normal/
lr_noise: False
lr_noise_types: ['JPEG', 'clean', 'clean', 'clean', 'clean']
lr_noise2: False
lr_noise_types2: ['dither', 'dither', 'clean', 'clean']
hr_noise: False
hr_noise_types: ['gaussian', 'clean', 'clean', 'clean', 'clean']
phase: train
scale: 4
data_type: img
]
val:[
name: val_images
mode: LRHROTF
dataroot_HR: ..\datasets\val\hr\hrUniversal
dataroot_LR: ..\datasets\val\lr\lrUniversal\Sharp
znorm: False
lr_downscale: False
lr_downscale_types: [1, 2]
phase: val
scale: 4
data_type: img
]
]
path:[
strict: False
root: C:\nn\BasicSR
pretrain_model_G: ..\experiments\pretrained_models\RRDB_ESRGAN_x4.pth
resume_state: ..\experiments\4x_UniversalUpscalerV2-Sharp\training_state\101000.state
experiments_root: C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Sharp
models: C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Sharp\models
training_state: C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Sharp\training_state
log: C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Sharp
val_images: C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Sharp\val_images
]
network_G:[
strict: False
which_model_G: RRDB_net
norm_type: None
mode: CNA
nf: 64
nb: 23
nr: 3
in_nc: 3
out_nc: 3
gc: 32
group: 1
convtype: Conv2D
net_act: leakyrelu
gaussian: True
plus: False
scale: 4
]
network_D:[
strict: True
which_model_D: multiscale
norm_type: batch
act_type: leakyrelu
mode: CNA
nf: 64
in_nc: 3
nlayer: 3
num_D: 3
]
train:[
lr_G: 0.0001
weight_decay_G: 0
beta1_G: 0.9
lr_D: 0.0001
weight_decay_D: 0
beta1_D: 0.9
lr_scheme: MultiStepLR
lr_gamma: 0.5
swa_start_iter: 70000
swa_lr: 0.0001
swa_anneal_epochs: 10
swa_anneal_strategy: cos
pixel_criterion: l1
pixel_weight: 0.1
cx_weight: 0.5
cx_type: contextual
cx_vgg_layers:[
conv_3_2: 1
conv_3_1: 1
conv_4_2: 1
conv_4_1: 1
conv_5_2: 1
conv_5_1: 1
]
ssim_type: ms-ssim
ssim_weight: 1
gan_type: vanilla
gan_weight: 0.009
manual_seed: 0
niter: 500000.0
val_freq: 1000
metrics: psnr,ssim,lpips
overwrite_val_imgs: None
val_comparison: None
lr_steps: [50000, 100000, 200000, 300000]
]
logger:[
print_freq: 200
save_checkpoint_freq: 1000
overwrite_chkp: False
]
is_train: True
21-03-30 20:30:19.220 - INFO: Random seed: 0
21-03-30 20:30:20.395 - INFO: Set [resume_state] to ..\experiments\4x_UniversalUpscalerV2-Sharp\training_state\101000.state
21-03-30 20:30:20.396 - INFO: Resuming training from epoch: 861, iter: 101000.
21-03-30 20:30:20.396 - WARNING: pretrain_model paths will be ignored when resuming training from a .state file.
21-03-30 20:30:20.396 - INFO: Set [pretrain_model_G] to C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Sharp\models\101000_G.pth
21-03-30 20:30:20.396 - INFO: Set [pretrain_model_D] to C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Sharp\models\101000_D.pth
21-03-30 20:30:20.413 - INFO: Dataset [LRHRDataset - DIV2K] is created.
21-03-30 20:30:20.413 - INFO: Number of train images: 470, iters: 118
21-03-30 20:30:20.413 - INFO: Total epochs needed: 4238 for iters 500,000
21-03-30 20:30:20.414 - INFO: Dataset [LRHRDataset - val_images] is created.
21-03-30 20:30:20.414 - INFO: Number of val images in [val_images]: 3
21-03-30 20:30:20.694 - INFO: AMP library available
21-03-30 20:30:20.819 - INFO: Initialization method [kaiming]
21-03-30 20:30:21.035 - INFO: Initialization method [kaiming]
21-03-30 20:30:21.092 - INFO: Loading pretrained model for G [C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Sharp\models\101000_G.pth] ...
21-03-30 20:30:21.304 - INFO: Loading pretrained model for D [C:\nn\BasicSR\experiments\4x_UniversalUpscalerV2-Sharp\models\101000_D.pth] ...
21-03-30 20:30:22.360 - INFO: SWA enabled. Starting on iter: 70000, lr: 0.0001
21-03-30 20:30:22.362 - INFO: AMP enabled
21-03-30 20:30:22.371 - INFO: Network G structure: DataParallel - RRDBNet, with parameters: 16,697,987
21-03-30 20:30:22.372 - INFO: Network D structure: DataParallel - MultiscaleDiscriminator, with parameters: 8,296,899
21-03-30 20:30:22.372 - INFO: Model [SRRaGANModel] is created.
21-03-30 20:30:22.450 - INFO: Start training from epoch: 861, iter: 101000
21-03-30 20:31:29.007 - INFO: End of epoch 861 / 4238 Time Taken: 66.5568 sec
21-03-30 20:32:15.106 - INFO: <epoch:862, iter: 101,200, lr:1.000e-04, t:-1.0000s, td:0.0352s, eta:0.0000h> pix-l1: 2.7355e-03 contextual: 4.5225e+00 l_g_gan: 1.2768e-01 ms-ssim: 1.0155e-01 l_d_real: 1.7323e+00 l_d_fake: 1.7264e+00 D_real: 1.3844e+01 D_fake: 1.2861e+00
21-03-30 20:32:32.400 - INFO: End of epoch 862 / 4238 Time Taken: 63.3934 sec
21-03-30 20:33:34.086 - INFO: End of epoch 863 / 4238 Time Taken: 61.6850 sec
21-03-30 20:34:01.791 - INFO: <epoch:864, iter: 101,400, lr:1.000e-04, t:-1.0000s, td:0.0346s, eta:0.0000h> pix-l1: 4.2290e-03 contextual: 3.6313e+00 l_g_gan: 1.1870e-01 ms-ssim: 7.8216e-02 l_d_real: 7.0160e-01 l_d_fake: 7.0307e-01 D_real: 7.8555e+00 D_fake: -1.4075e-01
21-03-30 20:34:35.818 - INFO: End of epoch 864 / 4238 Time Taken: 61.7320 sec
21-03-30 20:35:37.563 - INFO: End of epoch 865 / 4238 Time Taken: 61.7451 sec
21-03-30 20:35:48.419 - INFO: <epoch:866, iter: 101,600, lr:1.000e-04, t:106.6844s, td:0.0347s, eta:11806.4108h> pix-l1: 6.5755e-03 contextual: 4.5142e+00 l_g_gan: 7.4213e-02 ms-ssim: 1.1315e-01 l_d_real: 4.0147e-01 l_d_fake: 3.8975e-01 D_real: 8.2891e+00 D_fake: 5.0156e+00
21-03-30 20:36:39.345 - INFO: End of epoch 866 / 4238 Time Taken: 61.7818 sec
21-03-30 20:37:31.417 - INFO: <epoch:867, iter: 101,800, lr:1.000e-04, t:106.6287s, td:0.0174s, eta:11794.3148h> pix-l1: 3.5731e-03 contextual: 3.3757e+00 l_g_gan: 1.0602e-01 ms-ssim: 5.5085e-02 l_d_real: 4.3074e-01 l_d_fake: 4.2892e-01 D_real: 4.0625e+00 D_fake: -2.5117e+00
21-03-30 20:37:41.132 - INFO: End of epoch 867 / 4238 Time Taken: 61.7871 sec
21-03-30 20:38:43.018 - INFO: End of epoch 868 / 4238 Time Taken: 61.8860 sec
21-03-30 20:39:18.232 - INFO: <epoch:869, iter: 102,000, lr:1.000e-04, t:102.9978s, td:0.0348s, eta:11386.9778h> pix-l1: 2.3721e-03 contextual: 2.1929e+00 l_g_gan: 5.5651e-02 ms-ssim: 2.6698e-02 l_d_real: 8.8035e-01 l_d_fake: 8.9202e-01 D_real: -1.1617e+01 D_fake: -1.4680e+01
21-03-30 20:39:18.933 - INFO: Models and training states saved.
21-03-30 20:39:26.702 - INFO: # Validation # PSNR: 30.014, SSIM: 0.81439, LPIPS: 0.057651
21-03-30 20:39:26.702 - INFO: <epoch:869, iter: 102,000> PSNR: 30.014, SSIM: 0.81439, LPIPS: 0.057651
21-03-30 20:39:53.818 - INFO: End of epoch 869 / 4238 Time Taken: 70.7990 sec
21-03-30 20:40:57.025 - INFO: End of epoch 870 / 4238 Time Taken: 63.2068 sec
21-03-30 20:41:15.667 - INFO: <epoch:871, iter: 102,200, lr:1.000e-04, t:106.8148s, td:0.0350s, eta:11803.0375h> pix-l1: 5.3606e-03 contextual: 4.2364e+00 l_g_gan: 1.5190e-01 ms-ssim: 8.4528e-02 l_d_real: 3.9801e-01 l_d_fake: 3.9965e-01 D_real: 1.2242e+01 D_fake: 3.9727e+00
21-03-30 20:42:00.101 - INFO: End of epoch 871 / 4238 Time Taken: 63.0762 sec
21-03-30 20:43:00.985 - INFO: <epoch:872, iter: 102,400, lr:1.000e-04, t:117.4354s, td:0.0175s, eta:12970.0903h> pix-l1: 3.0082e-03 contextual: 3.0873e+00 l_g_gan: 5.7648e-02 ms-ssim: 4.7864e-02 l_d_real: 6.1739e-01 l_d_fake: 6.2757e-01 D_real: 2.8926e+00 D_fake: 6.4209e-01
21-03-30 20:43:03.308 - INFO: End of epoch 872 / 4238 Time Taken: 63.2063 sec
21-03-30 20:44:06.563 - INFO: End of epoch 873 / 4238 Time Taken: 63.2545 sec
21-03-30 20:44:50.163 - INFO: <epoch:874, iter: 102,600, lr:1.000e-04, t:105.3173s, td:0.0349s, eta:11625.8618h> pix-l1: 6.1895e-03 contextual: 5.0459e+00 l_g_gan: 1.0713e-01 ms-ssim: 1.2959e-01 l_d_real: 1.0727e+00 l_d_fake: 1.0845e+00 D_real: 1.8203e+01 D_fake: 8.4219e+00
21-03-30 20:45:09.776 - INFO: End of epoch 874 / 4238 Time Taken: 63.2135 sec
21-03-30 20:46:13.029 - INFO: End of epoch 875 / 4238 Time Taken: 63.2527 sec
21-03-30 20:46:39.293 - INFO: <epoch:876, iter: 102,800, lr:1.000e-04, t:109.1782s, td:0.0350s, eta:12045.9920h> pix-l1: 8.9756e-04 contextual: 3.4247e+00 l_g_gan: 6.9280e-02 ms-ssim: 1.3433e-02 l_d_real: 7.2783e-01 l_d_fake: 7.2643e-01 D_real: -1.0547e+01 D_fake: -1.4109e+01
21-03-30 20:47:16.149 - INFO: End of epoch 876 / 4238 Time Taken: 63.1192 sec
21-03-30 20:48:19.302 - INFO: End of epoch 877 / 4238 Time Taken: 63.1535 sec
21-03-30 20:48:28.324 - INFO: <epoch:878, iter: 103,000, lr:1.000e-04, t:109.1303s, td:0.0350s, eta:12034.6463h> pix-l1: 4.8335e-03 contextual: 4.4326e+00 l_g_gan: 2.6212e-02 ms-ssim: 1.2624e-01 l_d_real: 1.9453e+00 l_d_fake: 1.9452e+00 D_real: 1.8875e+01 D_fake: 1.7469e+01
21-03-30 20:48:29.039 - INFO: Models and training states saved.
21-03-30 20:48:34.606 - INFO: # Validation # PSNR: 29.56, SSIM: 0.79439, LPIPS: 0.055718
21-03-30 20:48:34.606 - INFO: <epoch:878, iter: 103,000> PSNR: 29.56, SSIM: 0.79439, LPIPS: 0.055718
21-03-30 20:49:28.854 - INFO: End of epoch 878 / 4238 Time Taken: 69.5518 sec
21-03-30 20:50:20.133 - INFO: <epoch:879, iter: 103,200, lr:1.000e-04, t:109.0305s, td:0.0175s, eta:12017.5813h> pix-l1: 4.1391e-03 contextual: 4.0319e+00 l_g_gan: 4.0400e-02 ms-ssim: 8.9757e-02 l_d_real: 1.5417e+00 l_d_fake: 1.5425e+00 D_real: 2.1816e+00 D_fake: -2.2766e-01
21-03-30 20:50:32.132 - INFO: End of epoch 879 / 4238 Time Taken: 63.2781 sec
21-03-30 20:51:35.305 - INFO: End of epoch 880 / 4238 Time Taken: 63.1731 sec
21-03-30 20:52:09.302 - INFO: <epoch:881, iter: 103,400, lr:1.000e-04, t:111.8093s, td:0.0351s, eta:12317.6589h> pix-l1: 2.8363e-03 contextual: 3.2613e+00 l_g_gan: 4.2616e-02 ms-ssim: 3.9401e-02 l_d_real: 1.1244e+00 l_d_fake: 1.1185e+00 D_real: -4.5156e+00 D_fake: -6.8398e+00
21-03-30 20:52:38.629 - INFO: End of epoch 881 / 4238 Time Taken: 63.3239 sec
21-03-30 20:53:41.798 - INFO: End of epoch 882 / 4238 Time Taken: 63.1685 sec
21-03-30 20:53:58.445 - INFO: <epoch:883, iter: 103,600, lr:1.000e-04, t:109.1694s, td:0.0351s, eta:12020.7645h> pix-l1: 5.5358e-03 contextual: 3.5163e+00 l_g_gan: 6.0203e-02 ms-ssim: 6.8828e-02 l_d_real: 7.8254e-01 l_d_fake: 8.0026e-01 D_real: 5.9688e+00 D_fake: 2.1582e+00
21-03-30 20:54:44.990 - INFO: End of epoch 883 / 4238 Time Taken: 63.1917 sec
21-03-30 20:55:43.942 - INFO: <epoch:884, iter: 103,800, lr:1.000e-04, t:109.1421s, td:0.0175s, eta:12011.6984h> pix-l1: 3.5468e-03 contextual: 2.8112e+00 l_g_gan: 6.4454e-02 ms-ssim: 4.2706e-02 l_d_real: 5.9588e-01 l_d_fake: 5.9420e-01 D_real: -1.1297e+01 D_fake: -1.4891e+01
21-03-30 20:55:48.306 - INFO: End of epoch 884 / 4238 Time Taken: 63.3159 sec
21-03-30 20:56:51.652 - INFO: End of epoch 885 / 4238 Time Taken: 63.3461 sec
21-03-30 20:57:33.194 - INFO: <epoch:886, iter: 104,000, lr:1.000e-04, t:105.4975s, td:0.0350s, eta:11604.7279h> pix-l1: 4.7393e-03 contextual: 3.3477e+00 l_g_gan: 1.1918e-01 ms-ssim: 1.4343e-01 l_d_real: 4.4456e-01 l_d_fake: 4.4528e-01 D_real: 5.5312e+00 D_fake: -2.8984e+00
21-03-30 20:57:33.894 - INFO: Models and training states saved.
21-03-30 20:57:39.485 - INFO: # Validation # PSNR: 29.898, SSIM: 0.80043, LPIPS: 0.051817
21-03-30 20:57:39.485 - INFO: <epoch:886, iter: 104,000> PSNR: 29.898, SSIM: 0.80043, LPIPS: 0.051817
21-03-30 20:58:01.065 - INFO: End of epoch 886 / 4238 Time Taken: 69.4124 sec
21-03-30 20:59:04.294 - INFO: End of epoch 887 / 4238 Time Taken: 63.2287 sec
21-03-30 20:59:28.576 - INFO: <epoch:888, iter: 104,200, lr:1.000e-04, t:109.2520s, td:0.0351s, eta:12011.6558h> pix-l1: 3.1305e-03 contextual: 3.0886e+00 l_g_gan: 1.8087e-01 ms-ssim: 4.6514e-02 l_d_real: 2.1245e-01 l_d_fake: 2.1277e-01 D_real: 4.3152e-02 D_fake: -7.9648e+00
21-03-30 21:00:07.516 - INFO: End of epoch 888 / 4238 Time Taken: 63.2222 sec
21-03-30 21:01:10.705 - INFO: End of epoch 889 / 4238 Time Taken: 63.1888 sec
21-03-30 21:01:17.705 - INFO: <epoch:890, iter: 104,400, lr:1.000e-04, t:115.3816s, td:0.0351s, eta:12679.1585h> pix-l1: 1.8427e-03 contextual: 2.7628e+00 l_g_gan: 2.6326e-02 ms-ssim: 3.5195e-02 l_d_real: 1.8821e+00 l_d_fake: 1.8805e+00 D_real: -2.7938e+01 D_fake: -2.8625e+01
21-03-30 21:02:13.988 - INFO: End of epoch 890 / 4238 Time Taken: 63.2828 sec
21-03-30 21:03:03.164 - INFO: <epoch:891, iter: 104,600, lr:1.000e-04, t:109.1293s, td:0.0175s, eta:11986.0397h> pix-l1: 3.3259e-03 contextual: 3.0378e+00 l_g_gan: 6.6153e-02 ms-ssim: 5.7246e-02 l_d_real: 5.3742e-01 l_d_fake: 5.3606e-01 D_real: 4.0430e-01 D_fake: -3.4609e+00
21-03-30 21:03:17.177 - INFO: End of epoch 891 / 4238 Time Taken: 63.1891 sec
21-03-30 21:04:20.377 - INFO: End of epoch 892 / 4238 Time Taken: 63.2005 sec
21-03-30 21:04:52.255 - INFO: <epoch:893, iter: 104,800, lr:1.000e-04, t:105.4596s, td:0.0351s, eta:11577.1251h> pix-l1: 4.8650e-03 contextual: 4.0218e+00 l_g_gan: 9.8383e-02 ms-ssim: 8.0442e-02 l_d_real: 5.8602e-01 l_d_fake: 5.8668e-01 D_real: 1.2766e+01 D_fake: 6.1289e+00
21-03-30 21:05:23.526 - INFO: End of epoch 893 / 4238 Time Taken: 63.1485 sec
21-03-30 21:06:26.716 - INFO: End of epoch 894 / 4238 Time Taken: 63.1906 sec
21-03-30 21:06:41.319 - INFO: <epoch:895, iter: 105,000, lr:1.000e-04, t:109.0897s, td:0.0351s, eta:11969.5677h> pix-l1: 4.8388e-03 contextual: 3.4847e+00 l_g_gan: 3.3059e-02 ms-ssim: 8.0116e-02 l_d_real: 1.4127e+00 l_d_fake: 1.4220e+00 D_real: -5.1221e-01 D_fake: -1.7080e+00
21-03-30 21:06:42.039 - INFO: Models and training states saved.
21-03-30 21:06:47.671 - INFO: # Validation # PSNR: 29.984, SSIM: 0.80758, LPIPS: 0.053631
21-03-30 21:06:47.671 - INFO: <epoch:895, iter: 105,000> PSNR: 29.984, SSIM: 0.80758, LPIPS: 0.053631
21-03-30 21:07:36.215 - INFO: End of epoch 895 / 4238 Time Taken: 69.4992 sec
21-03-30 21:08:33.058 - INFO: <epoch:896, iter: 105,200, lr:1.000e-04, t:109.0653s, td:0.0175s, eta:11960.8270h> pix-l1: 3.6562e-03 contextual: 3.4584e+00 l_g_gan: 8.4250e-02 ms-ssim: 4.3995e-02 l_d_real: 3.9135e-01 l_d_fake: 3.9310e-01 D_real: -9.5469e+00 D_fake: -1.3953e+01
21-03-30 21:08:39.469 - INFO: End of epoch 896 / 4238 Time Taken: 63.2533 sec
21-03-30 21:09:42.644 - INFO: End of epoch 897 / 4238 Time Taken: 63.1743 sec
21-03-30 21:10:22.167 - INFO: <epoch:898, iter: 105,400, lr:1.000e-04, t:111.7389s, td:0.0351s, eta:12247.8218h> pix-l1: 5.3548e-03 contextual: 5.9579e+00 l_g_gan: 1.3309e-01 ms-ssim: 1.0458e-01 l_d_real: 4.4470e-01 l_d_fake: 4.4430e-01 D_real: 8.9922e+00 D_fake: 1.7637e+00
21-03-30 21:10:45.833 - INFO: End of epoch 898 / 4238 Time Taken: 63.1884 sec
21-03-30 21:11:48.983 - INFO: End of epoch 899 / 4238 Time Taken: 63.1499 sec
21-03-30 21:12:11.228 - INFO: <epoch:900, iter: 105,600, lr:1.000e-04, t:109.1080s, td:0.0351s, eta:11953.3865h> pix-l1: 5.2555e-03 contextual: 4.0708e+00 l_g_gan: 3.6577e-02 ms-ssim: 7.4561e-02 l_d_real: 1.1595e+00 l_d_fake: 1.1695e+00 D_real: -3.0547e+00 D_fake: -4.2695e+00
21-03-30 21:12:52.172 - INFO: End of epoch 900 / 4238 Time Taken: 63.1887 sec
21-03-30 21:13:55.348 - INFO: End of epoch 901 / 4238 Time Taken: 63.1760 sec
21-03-30 21:14:00.302 - INFO: <epoch:902, iter: 105,800, lr:1.000e-04, t:109.0617s, td:0.0351s, eta:11942.2537h> pix-l1: 4.2225e-03 contextual: 3.6864e+00 l_g_gan: 1.3737e-01 ms-ssim: 1.0113e-01 l_d_real: 1.0191e+00 l_d_fake: 1.0189e+00 D_real: 1.8219e+01 D_fake: 7.7109e+00
21-03-30 21:14:58.574 - INFO: End of epoch 902 / 4238 Time Taken: 63.2261 sec
21-03-30 21:15:45.716 - INFO: <epoch:903, iter: 106,000, lr:1.000e-04, t:109.0740s, td:0.0176s, eta:11937.5381h> pix-l1: 2.9911e-03 contextual: 2.9750e+00 l_g_gan: 9.4199e-02 ms-ssim: 4.3258e-02 l_d_real: 5.9816e-01 l_d_fake: 5.9649e-01 D_real: 8.4453e+00 D_fake: 2.5508e+00
21-03-30 21:15:46.442 - INFO: Models and training states saved.
21-03-30 21:15:52.060 - INFO: # Validation # PSNR: 30.001, SSIM: 0.80233, LPIPS: 0.05284
21-03-30 21:15:52.060 - INFO: <epoch:903, iter: 106,000> PSNR: 30.001, SSIM: 0.80233, LPIPS: 0.05284
21-03-30 21:16:08.035 - INFO: End of epoch 903 / 4238 Time Taken: 69.4610 sec
21-03-30 21:17:11.266 - INFO: End of epoch 904 / 4238 Time Taken: 63.2295 sec
21-03-30 21:17:41.113 - INFO: <epoch:905, iter: 106,200, lr:1.000e-04, t:105.4138s, td:0.0352s, eta:11531.0961h> pix-l1: 5.0691e-03 contextual: 2.6204e+00 l_g_gan: 6.2196e-02 ms-ssim: 6.7046e-02 l_d_real: 7.5738e-01 l_d_fake: 7.4968e-01 D_real: -3.0273e+00 D_fake: -6.9570e+00
21-03-30 21:18:14.462 - INFO: End of epoch 905 / 4238 Time Taken: 63.1964 sec
21-03-30 21:19:17.692 - INFO: End of epoch 906 / 4238 Time Taken: 63.2290 sec
21-03-30 21:19:30.274 - INFO: <epoch:907, iter: 106,400, lr:1.000e-04, t:115.3970s, td:0.0351s, eta:12616.7346h> pix-l1: 4.3251e-03 contextual: 4.3311e+00 l_g_gan: 1.3520e-01 ms-ssim: 9.3275e-02 l_d_real: 4.4210e-01 l_d_fake: 4.3993e-01 D_real: 1.0492e+01 D_fake: 1.3311e+00
21-03-30 21:20:21.360 - INFO: End of epoch 907 / 4238 Time Taken: 63.6685 sec
21-03-30 21:21:19.969 - INFO: <epoch:908, iter: 106,600, lr:1.000e-04, t:109.1612s, td:0.0179s, eta:11928.8973h> pix-l1: 7.5666e-03 contextual: 5.4145e+00 l_g_gan: 7.0104e-02 ms-ssim: 1.2407e-01 l_d_real: 5.0690e-01 l_d_fake: 4.9510e-01 D_real: 2.1594e+01 D_fake: 1.7734e+01
21-03-30 21:21:30.173 - INFO: End of epoch 908 / 4238 Time Taken: 68.8126 sec
21-03-30 21:22:42.716 - INFO: End of epoch 909 / 4238 Time Taken: 72.5426 sec
21-03-30 21:23:24.601 - INFO: <epoch:910, iter: 106,800, lr:1.000e-04, t:109.6948s, td:0.0356s, eta:11981.1108h> pix-l1: 5.4628e-03 contextual: 4.0118e+00 l_g_gan: 1.6005e-01 ms-ssim: 9.5604e-02 l_d_real: 5.4765e-02 l_d_fake: 5.4735e-02 D_real: 3.1699e+00 D_fake: -4.5273e+00
21-03-30 21:24:02.250 - INFO: End of epoch 910 / 4238 Time Taken: 79.5341 sec
21-03-30 21:25:14.384 - INFO: End of epoch 911 / 4238 Time Taken: 72.1337 sec
21-03-30 21:25:36.769 - INFO: <epoch:912, iter: 107,000, lr:1.000e-04, t:124.6322s, td:0.0363s, eta:13605.6773h> pix-l1: 2.6891e-03 contextual: 5.5593e+00 l_g_gan: 1.6997e-01 ms-ssim: 6.4233e-02 l_d_real: 7.6057e-01 l_d_fake: 7.6413e-01 D_real: 6.0000e+00 D_fake: -5.1055e+00
21-03-30 21:25:37.546 - INFO: Models and training states saved.
21-03-30 21:25:43.820 - INFO: # Validation # PSNR: 30.508, SSIM: 0.82059, LPIPS: 0.06361
21-03-30 21:25:43.820 - INFO: <epoch:912, iter: 107,000> PSNR: 30.508, SSIM: 0.82059, LPIPS: 0.06361
21-03-30 21:26:28.379 - INFO: End of epoch 912 / 4238 Time Taken: 73.9941 sec
21-03-30 21:27:33.902 - INFO: <epoch:913, iter: 107,200, lr:1.000e-04, t:132.1681s, td:0.0178s, eta:14421.0047h> pix-l1: 2.6696e-03 contextual: 2.7854e+00 l_g_gan: 4.4398e-02 ms-ssim: 4.1290e-02 l_d_real: 1.9858e+00 l_d_fake: 1.9853e+00 D_real: -1.2676e+00 D_fake: -5.1914e+00
21-03-30 21:27:34.737 - INFO: End of epoch 913 / 4238 Time Taken: 66.3575 sec
21-03-30 21:28:39.912 - INFO: End of epoch 914 / 4238 Time Taken: 65.1748 sec
21-03-30 21:29:26.164 - INFO: <epoch:915, iter: 107,400, lr:1.000e-04, t:117.1325s, td:0.0368s, eta:12773.9535h> pix-l1: 3.8297e-03 contextual: 2.7292e+00 l_g_gan: 1.0028e-01 ms-ssim: 5.1544e-02 l_d_real: 1.1015e+00 l_d_fake: 1.0997e+00 D_real: 4.6172e+00 D_fake: -2.5645e+00
21-03-30 21:29:46.224 - INFO: End of epoch 915 / 4238 Time Taken: 66.3119 sec
21-03-30 21:30:52.020 - INFO: End of epoch 916 / 4238 Time Taken: 65.7959 sec
21-03-30 21:31:20.609 - INFO: <epoch:917, iter: 107,600, lr:1.000e-04, t:112.2620s, td:0.0356s, eta:12236.5545h> pix-l1: 2.5802e-03 contextual: 2.4022e+00 l_g_gan: 4.5948e-02 ms-ssim: 5.1849e-02 l_d_real: 1.6492e+00 l_d_fake: 1.6526e+00 D_real: -1.3500e+01 D_fake: -1.7219e+01
21-03-30 21:31:56.162 - INFO: End of epoch 917 / 4238 Time Taken: 64.1420 sec
21-03-30 21:32:59.748 - INFO: End of epoch 918 / 4238 Time Taken: 63.5856 sec
21-03-30 21:33:10.454 - INFO: <epoch:919, iter: 107,800, lr:1.000e-04, t:114.4456s, td:0.0354s, eta:12468.2098h> pix-l1: 2.3419e-03 contextual: 3.5648e+00 l_g_gan: 1.1729e-01 ms-ssim: 6.1200e-02 l_d_real: 8.6573e-01 l_d_fake: 8.6690e-01 D_real: 4.2188e+00 D_fake: -3.2930e+00
21-03-30 21:34:06.768 - INFO: End of epoch 919 / 4238 Time Taken: 67.0202 sec
21-03-30 21:35:02.463 - INFO: <epoch:920, iter: 108,000, lr:1.000e-04, t:109.8443s, td:0.0181s, eta:11960.8207h> pix-l1: 3.6716e-03 contextual: 2.8231e+00 l_g_gan: 1.1955e-01 ms-ssim: 4.6514e-02 l_d_real: 9.2139e-01 l_d_fake: 9.1170e-01 D_real: -3.8105e+00 D_fake: -1.4422e+01
21-03-30 21:35:03.217 - INFO: Models and training states saved.
21-03-30 21:35:09.053 - INFO: # Validation # PSNR: 29.891, SSIM: 0.80672, LPIPS: 0.055147
21-03-30 21:35:09.053 - INFO: <epoch:920, iter: 108,000> PSNR: 29.891, SSIM: 0.80672, LPIPS: 0.055147
21-03-30 21:35:19.673 - INFO: End of epoch 920 / 4238 Time Taken: 72.9055 sec
21-03-30 21:36:27.130 - INFO: End of epoch 921 / 4238 Time Taken: 67.4561 sec
21-03-30 21:37:03.104 - INFO: <epoch:922, iter: 108,200, lr:1.000e-04, t:112.0096s, td:0.0357s, eta:12190.3835h> pix-l1: 5.7819e-03 contextual: 4.2316e+00 l_g_gan: 6.2249e-02 ms-ssim: 7.9186e-02 l_d_real: 1.6421e+00 l_d_fake: 1.6486e+00 D_real: 4.7227e+00 D_fake: -9.0479e-01
|