--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: resnet-101-finetuned-CivilEng11k results: [] --- # resnet-101-finetuned-CivilEng11k This model is a fine-tuned version of [microsoft/resnet-101](https://huggingface.co/microsoft/resnet-101) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5490 - Accuracy: 0.8542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 10 - total_train_batch_size: 320 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.81 | 3 | 1.0724 | 0.5729 | | No log | 1.89 | 7 | 0.9717 | 0.6542 | | 1.0293 | 2.97 | 11 | 0.8594 | 0.6678 | | 1.0293 | 3.78 | 14 | 0.7830 | 0.7017 | | 1.0293 | 4.86 | 18 | 0.6764 | 0.7593 | | 0.78 | 5.95 | 22 | 0.6072 | 0.7831 | | 0.78 | 6.76 | 25 | 0.5745 | 0.8339 | | 0.78 | 7.84 | 29 | 0.5489 | 0.8508 | | 0.6037 | 8.11 | 30 | 0.5490 | 0.8542 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1+cpu - Datasets 2.13.1 - Tokenizers 0.13.3