File size: 1,738 Bytes
0d75d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39ae87
0d75d7c
 
 
 
 
 
 
 
 
b39ae87
 
0d75d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
826eb4c
 
b39ae87
0d75d7c
 
 
 
 
 
826eb4c
 
b39ae87
 
 
0d75d7c
 
 
 
 
826eb4c
0d75d7c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
datasets:
- stanfordnlp/snli
metrics:
- accuracy
model-index:
- name: bart-base-snli-model1
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: snli
      type: stanfordnlp/snli
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9082503556187767
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-snli-model1

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the snli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2611
- Accuracy: 0.9083

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 256
- eval_batch_size: 128
- seed: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3697        | 1.0   | 2146 | 0.2888          | 0.8993   |
| 0.3223        | 2.0   | 4292 | 0.2650          | 0.9075   |
| 0.2916        | 3.0   | 6438 | 0.2611          | 0.9083   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0