File size: 2,365 Bytes
733abb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6850
- Precision: 0.8936
- Recall: 0.9136
- F1: 0.9035
- Accuracy: 0.8445
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.33 | 100 | 0.6682 | 0.7574 | 0.8311 | 0.7925 | 0.7658 |
| No log | 2.67 | 200 | 0.4970 | 0.8289 | 0.8833 | 0.8552 | 0.8339 |
| No log | 4.0 | 300 | 0.5550 | 0.8398 | 0.8882 | 0.8634 | 0.8128 |
| No log | 5.33 | 400 | 0.5001 | 0.8800 | 0.9106 | 0.8950 | 0.8500 |
| 0.5341 | 6.67 | 500 | 0.5645 | 0.8947 | 0.9036 | 0.8992 | 0.8456 |
| 0.5341 | 8.0 | 600 | 0.5797 | 0.8847 | 0.9190 | 0.9016 | 0.8537 |
| 0.5341 | 9.33 | 700 | 0.6635 | 0.8816 | 0.9101 | 0.8956 | 0.8421 |
| 0.5341 | 10.67 | 800 | 0.6857 | 0.8939 | 0.9126 | 0.9031 | 0.8452 |
| 0.5341 | 12.0 | 900 | 0.6777 | 0.8941 | 0.9146 | 0.9042 | 0.8438 |
| 0.1335 | 13.33 | 1000 | 0.6850 | 0.8936 | 0.9136 | 0.9035 | 0.8445 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|