e5-base
Browse files- .gitattributes +0 -1
- 1_Pooling/config.json +7 -0
- README.md +2722 -0
- config.json +26 -0
- model.safetensors +3 -0
- modules.json +20 -0
- onnx/model.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
- pytorch_model.bin +3 -0
- quantize_config.json +30 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
@@ -25,7 +25,6 @@
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,2725 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
- Sentence Transformers
|
5 |
+
- sentence-similarity
|
6 |
+
- sentence-transformers
|
7 |
+
model-index:
|
8 |
+
- name: e5-base
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: Classification
|
12 |
+
dataset:
|
13 |
+
type: mteb/amazon_counterfactual
|
14 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
15 |
+
config: en
|
16 |
+
split: test
|
17 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
18 |
+
metrics:
|
19 |
+
- type: accuracy
|
20 |
+
value: 79.71641791044777
|
21 |
+
- type: ap
|
22 |
+
value: 44.15426065428253
|
23 |
+
- type: f1
|
24 |
+
value: 73.89474407693241
|
25 |
+
- task:
|
26 |
+
type: Classification
|
27 |
+
dataset:
|
28 |
+
type: mteb/amazon_polarity
|
29 |
+
name: MTEB AmazonPolarityClassification
|
30 |
+
config: default
|
31 |
+
split: test
|
32 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
33 |
+
metrics:
|
34 |
+
- type: accuracy
|
35 |
+
value: 87.9649
|
36 |
+
- type: ap
|
37 |
+
value: 84.10171551915973
|
38 |
+
- type: f1
|
39 |
+
value: 87.94148377827356
|
40 |
+
- task:
|
41 |
+
type: Classification
|
42 |
+
dataset:
|
43 |
+
type: mteb/amazon_reviews_multi
|
44 |
+
name: MTEB AmazonReviewsClassification (en)
|
45 |
+
config: en
|
46 |
+
split: test
|
47 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
48 |
+
metrics:
|
49 |
+
- type: accuracy
|
50 |
+
value: 42.645999999999994
|
51 |
+
- type: f1
|
52 |
+
value: 42.230574673549
|
53 |
+
- task:
|
54 |
+
type: Retrieval
|
55 |
+
dataset:
|
56 |
+
type: arguana
|
57 |
+
name: MTEB ArguAna
|
58 |
+
config: default
|
59 |
+
split: test
|
60 |
+
revision: None
|
61 |
+
metrics:
|
62 |
+
- type: map_at_1
|
63 |
+
value: 26.814
|
64 |
+
- type: map_at_10
|
65 |
+
value: 42.681999999999995
|
66 |
+
- type: map_at_100
|
67 |
+
value: 43.714
|
68 |
+
- type: map_at_1000
|
69 |
+
value: 43.724000000000004
|
70 |
+
- type: map_at_3
|
71 |
+
value: 38.11
|
72 |
+
- type: map_at_5
|
73 |
+
value: 40.666999999999994
|
74 |
+
- type: mrr_at_1
|
75 |
+
value: 27.168999999999997
|
76 |
+
- type: mrr_at_10
|
77 |
+
value: 42.84
|
78 |
+
- type: mrr_at_100
|
79 |
+
value: 43.864
|
80 |
+
- type: mrr_at_1000
|
81 |
+
value: 43.875
|
82 |
+
- type: mrr_at_3
|
83 |
+
value: 38.193
|
84 |
+
- type: mrr_at_5
|
85 |
+
value: 40.793
|
86 |
+
- type: ndcg_at_1
|
87 |
+
value: 26.814
|
88 |
+
- type: ndcg_at_10
|
89 |
+
value: 51.410999999999994
|
90 |
+
- type: ndcg_at_100
|
91 |
+
value: 55.713
|
92 |
+
- type: ndcg_at_1000
|
93 |
+
value: 55.957
|
94 |
+
- type: ndcg_at_3
|
95 |
+
value: 41.955
|
96 |
+
- type: ndcg_at_5
|
97 |
+
value: 46.558
|
98 |
+
- type: precision_at_1
|
99 |
+
value: 26.814
|
100 |
+
- type: precision_at_10
|
101 |
+
value: 7.922999999999999
|
102 |
+
- type: precision_at_100
|
103 |
+
value: 0.9780000000000001
|
104 |
+
- type: precision_at_1000
|
105 |
+
value: 0.1
|
106 |
+
- type: precision_at_3
|
107 |
+
value: 17.71
|
108 |
+
- type: precision_at_5
|
109 |
+
value: 12.859000000000002
|
110 |
+
- type: recall_at_1
|
111 |
+
value: 26.814
|
112 |
+
- type: recall_at_10
|
113 |
+
value: 79.232
|
114 |
+
- type: recall_at_100
|
115 |
+
value: 97.795
|
116 |
+
- type: recall_at_1000
|
117 |
+
value: 99.644
|
118 |
+
- type: recall_at_3
|
119 |
+
value: 53.129000000000005
|
120 |
+
- type: recall_at_5
|
121 |
+
value: 64.29599999999999
|
122 |
+
- task:
|
123 |
+
type: Clustering
|
124 |
+
dataset:
|
125 |
+
type: mteb/arxiv-clustering-p2p
|
126 |
+
name: MTEB ArxivClusteringP2P
|
127 |
+
config: default
|
128 |
+
split: test
|
129 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
130 |
+
metrics:
|
131 |
+
- type: v_measure
|
132 |
+
value: 44.56933066536439
|
133 |
+
- task:
|
134 |
+
type: Clustering
|
135 |
+
dataset:
|
136 |
+
type: mteb/arxiv-clustering-s2s
|
137 |
+
name: MTEB ArxivClusteringS2S
|
138 |
+
config: default
|
139 |
+
split: test
|
140 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
141 |
+
metrics:
|
142 |
+
- type: v_measure
|
143 |
+
value: 40.47647746165173
|
144 |
+
- task:
|
145 |
+
type: Reranking
|
146 |
+
dataset:
|
147 |
+
type: mteb/askubuntudupquestions-reranking
|
148 |
+
name: MTEB AskUbuntuDupQuestions
|
149 |
+
config: default
|
150 |
+
split: test
|
151 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
152 |
+
metrics:
|
153 |
+
- type: map
|
154 |
+
value: 59.65675531567043
|
155 |
+
- type: mrr
|
156 |
+
value: 72.95255683067317
|
157 |
+
- task:
|
158 |
+
type: STS
|
159 |
+
dataset:
|
160 |
+
type: mteb/biosses-sts
|
161 |
+
name: MTEB BIOSSES
|
162 |
+
config: default
|
163 |
+
split: test
|
164 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
165 |
+
metrics:
|
166 |
+
- type: cos_sim_pearson
|
167 |
+
value: 85.83147014162338
|
168 |
+
- type: cos_sim_spearman
|
169 |
+
value: 85.1031439521441
|
170 |
+
- type: euclidean_pearson
|
171 |
+
value: 83.53609085510973
|
172 |
+
- type: euclidean_spearman
|
173 |
+
value: 84.59650590202833
|
174 |
+
- type: manhattan_pearson
|
175 |
+
value: 83.14611947586386
|
176 |
+
- type: manhattan_spearman
|
177 |
+
value: 84.13384475757064
|
178 |
+
- task:
|
179 |
+
type: Classification
|
180 |
+
dataset:
|
181 |
+
type: mteb/banking77
|
182 |
+
name: MTEB Banking77Classification
|
183 |
+
config: default
|
184 |
+
split: test
|
185 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
186 |
+
metrics:
|
187 |
+
- type: accuracy
|
188 |
+
value: 83.32792207792208
|
189 |
+
- type: f1
|
190 |
+
value: 83.32037485050513
|
191 |
+
- task:
|
192 |
+
type: Clustering
|
193 |
+
dataset:
|
194 |
+
type: mteb/biorxiv-clustering-p2p
|
195 |
+
name: MTEB BiorxivClusteringP2P
|
196 |
+
config: default
|
197 |
+
split: test
|
198 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
199 |
+
metrics:
|
200 |
+
- type: v_measure
|
201 |
+
value: 36.18605446588703
|
202 |
+
- task:
|
203 |
+
type: Clustering
|
204 |
+
dataset:
|
205 |
+
type: mteb/biorxiv-clustering-s2s
|
206 |
+
name: MTEB BiorxivClusteringS2S
|
207 |
+
config: default
|
208 |
+
split: test
|
209 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
210 |
+
metrics:
|
211 |
+
- type: v_measure
|
212 |
+
value: 32.72379130181917
|
213 |
+
- task:
|
214 |
+
type: Retrieval
|
215 |
+
dataset:
|
216 |
+
type: BeIR/cqadupstack
|
217 |
+
name: MTEB CQADupstackAndroidRetrieval
|
218 |
+
config: default
|
219 |
+
split: test
|
220 |
+
revision: None
|
221 |
+
metrics:
|
222 |
+
- type: map_at_1
|
223 |
+
value: 30.659
|
224 |
+
- type: map_at_10
|
225 |
+
value: 40.333999999999996
|
226 |
+
- type: map_at_100
|
227 |
+
value: 41.763
|
228 |
+
- type: map_at_1000
|
229 |
+
value: 41.894
|
230 |
+
- type: map_at_3
|
231 |
+
value: 37.561
|
232 |
+
- type: map_at_5
|
233 |
+
value: 39.084
|
234 |
+
- type: mrr_at_1
|
235 |
+
value: 37.482
|
236 |
+
- type: mrr_at_10
|
237 |
+
value: 45.736
|
238 |
+
- type: mrr_at_100
|
239 |
+
value: 46.591
|
240 |
+
- type: mrr_at_1000
|
241 |
+
value: 46.644999999999996
|
242 |
+
- type: mrr_at_3
|
243 |
+
value: 43.491
|
244 |
+
- type: mrr_at_5
|
245 |
+
value: 44.75
|
246 |
+
- type: ndcg_at_1
|
247 |
+
value: 37.482
|
248 |
+
- type: ndcg_at_10
|
249 |
+
value: 45.606
|
250 |
+
- type: ndcg_at_100
|
251 |
+
value: 51.172
|
252 |
+
- type: ndcg_at_1000
|
253 |
+
value: 53.407000000000004
|
254 |
+
- type: ndcg_at_3
|
255 |
+
value: 41.808
|
256 |
+
- type: ndcg_at_5
|
257 |
+
value: 43.449
|
258 |
+
- type: precision_at_1
|
259 |
+
value: 37.482
|
260 |
+
- type: precision_at_10
|
261 |
+
value: 8.254999999999999
|
262 |
+
- type: precision_at_100
|
263 |
+
value: 1.3719999999999999
|
264 |
+
- type: precision_at_1000
|
265 |
+
value: 0.186
|
266 |
+
- type: precision_at_3
|
267 |
+
value: 19.695
|
268 |
+
- type: precision_at_5
|
269 |
+
value: 13.847999999999999
|
270 |
+
- type: recall_at_1
|
271 |
+
value: 30.659
|
272 |
+
- type: recall_at_10
|
273 |
+
value: 55.409
|
274 |
+
- type: recall_at_100
|
275 |
+
value: 78.687
|
276 |
+
- type: recall_at_1000
|
277 |
+
value: 93.068
|
278 |
+
- type: recall_at_3
|
279 |
+
value: 43.891999999999996
|
280 |
+
- type: recall_at_5
|
281 |
+
value: 48.678
|
282 |
+
- task:
|
283 |
+
type: Retrieval
|
284 |
+
dataset:
|
285 |
+
type: BeIR/cqadupstack
|
286 |
+
name: MTEB CQADupstackEnglishRetrieval
|
287 |
+
config: default
|
288 |
+
split: test
|
289 |
+
revision: None
|
290 |
+
metrics:
|
291 |
+
- type: map_at_1
|
292 |
+
value: 30.977
|
293 |
+
- type: map_at_10
|
294 |
+
value: 40.296
|
295 |
+
- type: map_at_100
|
296 |
+
value: 41.453
|
297 |
+
- type: map_at_1000
|
298 |
+
value: 41.581
|
299 |
+
- type: map_at_3
|
300 |
+
value: 37.619
|
301 |
+
- type: map_at_5
|
302 |
+
value: 39.181
|
303 |
+
- type: mrr_at_1
|
304 |
+
value: 39.108
|
305 |
+
- type: mrr_at_10
|
306 |
+
value: 46.894000000000005
|
307 |
+
- type: mrr_at_100
|
308 |
+
value: 47.55
|
309 |
+
- type: mrr_at_1000
|
310 |
+
value: 47.598
|
311 |
+
- type: mrr_at_3
|
312 |
+
value: 44.766
|
313 |
+
- type: mrr_at_5
|
314 |
+
value: 46.062999999999995
|
315 |
+
- type: ndcg_at_1
|
316 |
+
value: 39.108
|
317 |
+
- type: ndcg_at_10
|
318 |
+
value: 45.717
|
319 |
+
- type: ndcg_at_100
|
320 |
+
value: 49.941
|
321 |
+
- type: ndcg_at_1000
|
322 |
+
value: 52.138
|
323 |
+
- type: ndcg_at_3
|
324 |
+
value: 42.05
|
325 |
+
- type: ndcg_at_5
|
326 |
+
value: 43.893
|
327 |
+
- type: precision_at_1
|
328 |
+
value: 39.108
|
329 |
+
- type: precision_at_10
|
330 |
+
value: 8.306
|
331 |
+
- type: precision_at_100
|
332 |
+
value: 1.3419999999999999
|
333 |
+
- type: precision_at_1000
|
334 |
+
value: 0.184
|
335 |
+
- type: precision_at_3
|
336 |
+
value: 19.979
|
337 |
+
- type: precision_at_5
|
338 |
+
value: 14.038
|
339 |
+
- type: recall_at_1
|
340 |
+
value: 30.977
|
341 |
+
- type: recall_at_10
|
342 |
+
value: 54.688
|
343 |
+
- type: recall_at_100
|
344 |
+
value: 72.556
|
345 |
+
- type: recall_at_1000
|
346 |
+
value: 86.53800000000001
|
347 |
+
- type: recall_at_3
|
348 |
+
value: 43.388
|
349 |
+
- type: recall_at_5
|
350 |
+
value: 48.717
|
351 |
+
- task:
|
352 |
+
type: Retrieval
|
353 |
+
dataset:
|
354 |
+
type: BeIR/cqadupstack
|
355 |
+
name: MTEB CQADupstackGamingRetrieval
|
356 |
+
config: default
|
357 |
+
split: test
|
358 |
+
revision: None
|
359 |
+
metrics:
|
360 |
+
- type: map_at_1
|
361 |
+
value: 39.812
|
362 |
+
- type: map_at_10
|
363 |
+
value: 50.1
|
364 |
+
- type: map_at_100
|
365 |
+
value: 51.193999999999996
|
366 |
+
- type: map_at_1000
|
367 |
+
value: 51.258
|
368 |
+
- type: map_at_3
|
369 |
+
value: 47.510999999999996
|
370 |
+
- type: map_at_5
|
371 |
+
value: 48.891
|
372 |
+
- type: mrr_at_1
|
373 |
+
value: 45.266
|
374 |
+
- type: mrr_at_10
|
375 |
+
value: 53.459999999999994
|
376 |
+
- type: mrr_at_100
|
377 |
+
value: 54.19199999999999
|
378 |
+
- type: mrr_at_1000
|
379 |
+
value: 54.228
|
380 |
+
- type: mrr_at_3
|
381 |
+
value: 51.296
|
382 |
+
- type: mrr_at_5
|
383 |
+
value: 52.495999999999995
|
384 |
+
- type: ndcg_at_1
|
385 |
+
value: 45.266
|
386 |
+
- type: ndcg_at_10
|
387 |
+
value: 55.034000000000006
|
388 |
+
- type: ndcg_at_100
|
389 |
+
value: 59.458
|
390 |
+
- type: ndcg_at_1000
|
391 |
+
value: 60.862
|
392 |
+
- type: ndcg_at_3
|
393 |
+
value: 50.52799999999999
|
394 |
+
- type: ndcg_at_5
|
395 |
+
value: 52.564
|
396 |
+
- type: precision_at_1
|
397 |
+
value: 45.266
|
398 |
+
- type: precision_at_10
|
399 |
+
value: 8.483
|
400 |
+
- type: precision_at_100
|
401 |
+
value: 1.162
|
402 |
+
- type: precision_at_1000
|
403 |
+
value: 0.133
|
404 |
+
- type: precision_at_3
|
405 |
+
value: 21.944
|
406 |
+
- type: precision_at_5
|
407 |
+
value: 14.721
|
408 |
+
- type: recall_at_1
|
409 |
+
value: 39.812
|
410 |
+
- type: recall_at_10
|
411 |
+
value: 66.36
|
412 |
+
- type: recall_at_100
|
413 |
+
value: 85.392
|
414 |
+
- type: recall_at_1000
|
415 |
+
value: 95.523
|
416 |
+
- type: recall_at_3
|
417 |
+
value: 54.127
|
418 |
+
- type: recall_at_5
|
419 |
+
value: 59.245000000000005
|
420 |
+
- task:
|
421 |
+
type: Retrieval
|
422 |
+
dataset:
|
423 |
+
type: BeIR/cqadupstack
|
424 |
+
name: MTEB CQADupstackGisRetrieval
|
425 |
+
config: default
|
426 |
+
split: test
|
427 |
+
revision: None
|
428 |
+
metrics:
|
429 |
+
- type: map_at_1
|
430 |
+
value: 26.186
|
431 |
+
- type: map_at_10
|
432 |
+
value: 33.18
|
433 |
+
- type: map_at_100
|
434 |
+
value: 34.052
|
435 |
+
- type: map_at_1000
|
436 |
+
value: 34.149
|
437 |
+
- type: map_at_3
|
438 |
+
value: 31.029
|
439 |
+
- type: map_at_5
|
440 |
+
value: 32.321
|
441 |
+
- type: mrr_at_1
|
442 |
+
value: 28.136
|
443 |
+
- type: mrr_at_10
|
444 |
+
value: 35.195
|
445 |
+
- type: mrr_at_100
|
446 |
+
value: 35.996
|
447 |
+
- type: mrr_at_1000
|
448 |
+
value: 36.076
|
449 |
+
- type: mrr_at_3
|
450 |
+
value: 33.051
|
451 |
+
- type: mrr_at_5
|
452 |
+
value: 34.407
|
453 |
+
- type: ndcg_at_1
|
454 |
+
value: 28.136
|
455 |
+
- type: ndcg_at_10
|
456 |
+
value: 37.275999999999996
|
457 |
+
- type: ndcg_at_100
|
458 |
+
value: 41.935
|
459 |
+
- type: ndcg_at_1000
|
460 |
+
value: 44.389
|
461 |
+
- type: ndcg_at_3
|
462 |
+
value: 33.059
|
463 |
+
- type: ndcg_at_5
|
464 |
+
value: 35.313
|
465 |
+
- type: precision_at_1
|
466 |
+
value: 28.136
|
467 |
+
- type: precision_at_10
|
468 |
+
value: 5.457999999999999
|
469 |
+
- type: precision_at_100
|
470 |
+
value: 0.826
|
471 |
+
- type: precision_at_1000
|
472 |
+
value: 0.107
|
473 |
+
- type: precision_at_3
|
474 |
+
value: 13.522
|
475 |
+
- type: precision_at_5
|
476 |
+
value: 9.424000000000001
|
477 |
+
- type: recall_at_1
|
478 |
+
value: 26.186
|
479 |
+
- type: recall_at_10
|
480 |
+
value: 47.961999999999996
|
481 |
+
- type: recall_at_100
|
482 |
+
value: 70.072
|
483 |
+
- type: recall_at_1000
|
484 |
+
value: 88.505
|
485 |
+
- type: recall_at_3
|
486 |
+
value: 36.752
|
487 |
+
- type: recall_at_5
|
488 |
+
value: 42.168
|
489 |
+
- task:
|
490 |
+
type: Retrieval
|
491 |
+
dataset:
|
492 |
+
type: BeIR/cqadupstack
|
493 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
494 |
+
config: default
|
495 |
+
split: test
|
496 |
+
revision: None
|
497 |
+
metrics:
|
498 |
+
- type: map_at_1
|
499 |
+
value: 16.586000000000002
|
500 |
+
- type: map_at_10
|
501 |
+
value: 23.637
|
502 |
+
- type: map_at_100
|
503 |
+
value: 24.82
|
504 |
+
- type: map_at_1000
|
505 |
+
value: 24.95
|
506 |
+
- type: map_at_3
|
507 |
+
value: 21.428
|
508 |
+
- type: map_at_5
|
509 |
+
value: 22.555
|
510 |
+
- type: mrr_at_1
|
511 |
+
value: 20.771
|
512 |
+
- type: mrr_at_10
|
513 |
+
value: 27.839999999999996
|
514 |
+
- type: mrr_at_100
|
515 |
+
value: 28.887
|
516 |
+
- type: mrr_at_1000
|
517 |
+
value: 28.967
|
518 |
+
- type: mrr_at_3
|
519 |
+
value: 25.56
|
520 |
+
- type: mrr_at_5
|
521 |
+
value: 26.723000000000003
|
522 |
+
- type: ndcg_at_1
|
523 |
+
value: 20.771
|
524 |
+
- type: ndcg_at_10
|
525 |
+
value: 28.255000000000003
|
526 |
+
- type: ndcg_at_100
|
527 |
+
value: 33.886
|
528 |
+
- type: ndcg_at_1000
|
529 |
+
value: 36.963
|
530 |
+
- type: ndcg_at_3
|
531 |
+
value: 24.056
|
532 |
+
- type: ndcg_at_5
|
533 |
+
value: 25.818
|
534 |
+
- type: precision_at_1
|
535 |
+
value: 20.771
|
536 |
+
- type: precision_at_10
|
537 |
+
value: 5.1
|
538 |
+
- type: precision_at_100
|
539 |
+
value: 0.9119999999999999
|
540 |
+
- type: precision_at_1000
|
541 |
+
value: 0.132
|
542 |
+
- type: precision_at_3
|
543 |
+
value: 11.526
|
544 |
+
- type: precision_at_5
|
545 |
+
value: 8.158999999999999
|
546 |
+
- type: recall_at_1
|
547 |
+
value: 16.586000000000002
|
548 |
+
- type: recall_at_10
|
549 |
+
value: 38.456
|
550 |
+
- type: recall_at_100
|
551 |
+
value: 62.666
|
552 |
+
- type: recall_at_1000
|
553 |
+
value: 84.47
|
554 |
+
- type: recall_at_3
|
555 |
+
value: 26.765
|
556 |
+
- type: recall_at_5
|
557 |
+
value: 31.297000000000004
|
558 |
+
- task:
|
559 |
+
type: Retrieval
|
560 |
+
dataset:
|
561 |
+
type: BeIR/cqadupstack
|
562 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
563 |
+
config: default
|
564 |
+
split: test
|
565 |
+
revision: None
|
566 |
+
metrics:
|
567 |
+
- type: map_at_1
|
568 |
+
value: 28.831
|
569 |
+
- type: map_at_10
|
570 |
+
value: 37.545
|
571 |
+
- type: map_at_100
|
572 |
+
value: 38.934999999999995
|
573 |
+
- type: map_at_1000
|
574 |
+
value: 39.044000000000004
|
575 |
+
- type: map_at_3
|
576 |
+
value: 34.601
|
577 |
+
- type: map_at_5
|
578 |
+
value: 36.302
|
579 |
+
- type: mrr_at_1
|
580 |
+
value: 34.264
|
581 |
+
- type: mrr_at_10
|
582 |
+
value: 42.569
|
583 |
+
- type: mrr_at_100
|
584 |
+
value: 43.514
|
585 |
+
- type: mrr_at_1000
|
586 |
+
value: 43.561
|
587 |
+
- type: mrr_at_3
|
588 |
+
value: 40.167
|
589 |
+
- type: mrr_at_5
|
590 |
+
value: 41.678
|
591 |
+
- type: ndcg_at_1
|
592 |
+
value: 34.264
|
593 |
+
- type: ndcg_at_10
|
594 |
+
value: 42.914
|
595 |
+
- type: ndcg_at_100
|
596 |
+
value: 48.931999999999995
|
597 |
+
- type: ndcg_at_1000
|
598 |
+
value: 51.004000000000005
|
599 |
+
- type: ndcg_at_3
|
600 |
+
value: 38.096999999999994
|
601 |
+
- type: ndcg_at_5
|
602 |
+
value: 40.509
|
603 |
+
- type: precision_at_1
|
604 |
+
value: 34.264
|
605 |
+
- type: precision_at_10
|
606 |
+
value: 7.642
|
607 |
+
- type: precision_at_100
|
608 |
+
value: 1.258
|
609 |
+
- type: precision_at_1000
|
610 |
+
value: 0.161
|
611 |
+
- type: precision_at_3
|
612 |
+
value: 17.453
|
613 |
+
- type: precision_at_5
|
614 |
+
value: 12.608
|
615 |
+
- type: recall_at_1
|
616 |
+
value: 28.831
|
617 |
+
- type: recall_at_10
|
618 |
+
value: 53.56999999999999
|
619 |
+
- type: recall_at_100
|
620 |
+
value: 79.26100000000001
|
621 |
+
- type: recall_at_1000
|
622 |
+
value: 92.862
|
623 |
+
- type: recall_at_3
|
624 |
+
value: 40.681
|
625 |
+
- type: recall_at_5
|
626 |
+
value: 46.597
|
627 |
+
- task:
|
628 |
+
type: Retrieval
|
629 |
+
dataset:
|
630 |
+
type: BeIR/cqadupstack
|
631 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
632 |
+
config: default
|
633 |
+
split: test
|
634 |
+
revision: None
|
635 |
+
metrics:
|
636 |
+
- type: map_at_1
|
637 |
+
value: 27.461000000000002
|
638 |
+
- type: map_at_10
|
639 |
+
value: 35.885
|
640 |
+
- type: map_at_100
|
641 |
+
value: 37.039
|
642 |
+
- type: map_at_1000
|
643 |
+
value: 37.16
|
644 |
+
- type: map_at_3
|
645 |
+
value: 33.451
|
646 |
+
- type: map_at_5
|
647 |
+
value: 34.807
|
648 |
+
- type: mrr_at_1
|
649 |
+
value: 34.018
|
650 |
+
- type: mrr_at_10
|
651 |
+
value: 41.32
|
652 |
+
- type: mrr_at_100
|
653 |
+
value: 42.157
|
654 |
+
- type: mrr_at_1000
|
655 |
+
value: 42.223
|
656 |
+
- type: mrr_at_3
|
657 |
+
value: 39.288000000000004
|
658 |
+
- type: mrr_at_5
|
659 |
+
value: 40.481
|
660 |
+
- type: ndcg_at_1
|
661 |
+
value: 34.018
|
662 |
+
- type: ndcg_at_10
|
663 |
+
value: 40.821000000000005
|
664 |
+
- type: ndcg_at_100
|
665 |
+
value: 46.053
|
666 |
+
- type: ndcg_at_1000
|
667 |
+
value: 48.673
|
668 |
+
- type: ndcg_at_3
|
669 |
+
value: 36.839
|
670 |
+
- type: ndcg_at_5
|
671 |
+
value: 38.683
|
672 |
+
- type: precision_at_1
|
673 |
+
value: 34.018
|
674 |
+
- type: precision_at_10
|
675 |
+
value: 7.009
|
676 |
+
- type: precision_at_100
|
677 |
+
value: 1.123
|
678 |
+
- type: precision_at_1000
|
679 |
+
value: 0.153
|
680 |
+
- type: precision_at_3
|
681 |
+
value: 16.933
|
682 |
+
- type: precision_at_5
|
683 |
+
value: 11.826
|
684 |
+
- type: recall_at_1
|
685 |
+
value: 27.461000000000002
|
686 |
+
- type: recall_at_10
|
687 |
+
value: 50.285000000000004
|
688 |
+
- type: recall_at_100
|
689 |
+
value: 73.25500000000001
|
690 |
+
- type: recall_at_1000
|
691 |
+
value: 91.17699999999999
|
692 |
+
- type: recall_at_3
|
693 |
+
value: 39.104
|
694 |
+
- type: recall_at_5
|
695 |
+
value: 43.968
|
696 |
+
- task:
|
697 |
+
type: Retrieval
|
698 |
+
dataset:
|
699 |
+
type: BeIR/cqadupstack
|
700 |
+
name: MTEB CQADupstackRetrieval
|
701 |
+
config: default
|
702 |
+
split: test
|
703 |
+
revision: None
|
704 |
+
metrics:
|
705 |
+
- type: map_at_1
|
706 |
+
value: 26.980083333333337
|
707 |
+
- type: map_at_10
|
708 |
+
value: 34.47208333333333
|
709 |
+
- type: map_at_100
|
710 |
+
value: 35.609249999999996
|
711 |
+
- type: map_at_1000
|
712 |
+
value: 35.72833333333333
|
713 |
+
- type: map_at_3
|
714 |
+
value: 32.189416666666666
|
715 |
+
- type: map_at_5
|
716 |
+
value: 33.44683333333334
|
717 |
+
- type: mrr_at_1
|
718 |
+
value: 31.731666666666662
|
719 |
+
- type: mrr_at_10
|
720 |
+
value: 38.518
|
721 |
+
- type: mrr_at_100
|
722 |
+
value: 39.38166666666667
|
723 |
+
- type: mrr_at_1000
|
724 |
+
value: 39.446999999999996
|
725 |
+
- type: mrr_at_3
|
726 |
+
value: 36.49966666666668
|
727 |
+
- type: mrr_at_5
|
728 |
+
value: 37.639916666666664
|
729 |
+
- type: ndcg_at_1
|
730 |
+
value: 31.731666666666662
|
731 |
+
- type: ndcg_at_10
|
732 |
+
value: 38.92033333333333
|
733 |
+
- type: ndcg_at_100
|
734 |
+
value: 44.01675
|
735 |
+
- type: ndcg_at_1000
|
736 |
+
value: 46.51075
|
737 |
+
- type: ndcg_at_3
|
738 |
+
value: 35.09766666666667
|
739 |
+
- type: ndcg_at_5
|
740 |
+
value: 36.842999999999996
|
741 |
+
- type: precision_at_1
|
742 |
+
value: 31.731666666666662
|
743 |
+
- type: precision_at_10
|
744 |
+
value: 6.472583333333332
|
745 |
+
- type: precision_at_100
|
746 |
+
value: 1.0665
|
747 |
+
- type: precision_at_1000
|
748 |
+
value: 0.14725000000000002
|
749 |
+
- type: precision_at_3
|
750 |
+
value: 15.659083333333331
|
751 |
+
- type: precision_at_5
|
752 |
+
value: 10.878833333333333
|
753 |
+
- type: recall_at_1
|
754 |
+
value: 26.980083333333337
|
755 |
+
- type: recall_at_10
|
756 |
+
value: 48.13925
|
757 |
+
- type: recall_at_100
|
758 |
+
value: 70.70149999999998
|
759 |
+
- type: recall_at_1000
|
760 |
+
value: 88.10775000000001
|
761 |
+
- type: recall_at_3
|
762 |
+
value: 37.30091666666667
|
763 |
+
- type: recall_at_5
|
764 |
+
value: 41.90358333333333
|
765 |
+
- task:
|
766 |
+
type: Retrieval
|
767 |
+
dataset:
|
768 |
+
type: BeIR/cqadupstack
|
769 |
+
name: MTEB CQADupstackStatsRetrieval
|
770 |
+
config: default
|
771 |
+
split: test
|
772 |
+
revision: None
|
773 |
+
metrics:
|
774 |
+
- type: map_at_1
|
775 |
+
value: 25.607999999999997
|
776 |
+
- type: map_at_10
|
777 |
+
value: 30.523
|
778 |
+
- type: map_at_100
|
779 |
+
value: 31.409
|
780 |
+
- type: map_at_1000
|
781 |
+
value: 31.507
|
782 |
+
- type: map_at_3
|
783 |
+
value: 28.915000000000003
|
784 |
+
- type: map_at_5
|
785 |
+
value: 29.756
|
786 |
+
- type: mrr_at_1
|
787 |
+
value: 28.681
|
788 |
+
- type: mrr_at_10
|
789 |
+
value: 33.409
|
790 |
+
- type: mrr_at_100
|
791 |
+
value: 34.241
|
792 |
+
- type: mrr_at_1000
|
793 |
+
value: 34.313
|
794 |
+
- type: mrr_at_3
|
795 |
+
value: 32.029999999999994
|
796 |
+
- type: mrr_at_5
|
797 |
+
value: 32.712
|
798 |
+
- type: ndcg_at_1
|
799 |
+
value: 28.681
|
800 |
+
- type: ndcg_at_10
|
801 |
+
value: 33.733000000000004
|
802 |
+
- type: ndcg_at_100
|
803 |
+
value: 38.32
|
804 |
+
- type: ndcg_at_1000
|
805 |
+
value: 40.937
|
806 |
+
- type: ndcg_at_3
|
807 |
+
value: 30.898999999999997
|
808 |
+
- type: ndcg_at_5
|
809 |
+
value: 32.088
|
810 |
+
- type: precision_at_1
|
811 |
+
value: 28.681
|
812 |
+
- type: precision_at_10
|
813 |
+
value: 4.968999999999999
|
814 |
+
- type: precision_at_100
|
815 |
+
value: 0.79
|
816 |
+
- type: precision_at_1000
|
817 |
+
value: 0.11
|
818 |
+
- type: precision_at_3
|
819 |
+
value: 12.73
|
820 |
+
- type: precision_at_5
|
821 |
+
value: 8.558
|
822 |
+
- type: recall_at_1
|
823 |
+
value: 25.607999999999997
|
824 |
+
- type: recall_at_10
|
825 |
+
value: 40.722
|
826 |
+
- type: recall_at_100
|
827 |
+
value: 61.956999999999994
|
828 |
+
- type: recall_at_1000
|
829 |
+
value: 81.43
|
830 |
+
- type: recall_at_3
|
831 |
+
value: 32.785
|
832 |
+
- type: recall_at_5
|
833 |
+
value: 35.855
|
834 |
+
- task:
|
835 |
+
type: Retrieval
|
836 |
+
dataset:
|
837 |
+
type: BeIR/cqadupstack
|
838 |
+
name: MTEB CQADupstackTexRetrieval
|
839 |
+
config: default
|
840 |
+
split: test
|
841 |
+
revision: None
|
842 |
+
metrics:
|
843 |
+
- type: map_at_1
|
844 |
+
value: 20.399
|
845 |
+
- type: map_at_10
|
846 |
+
value: 25.968000000000004
|
847 |
+
- type: map_at_100
|
848 |
+
value: 26.985999999999997
|
849 |
+
- type: map_at_1000
|
850 |
+
value: 27.105
|
851 |
+
- type: map_at_3
|
852 |
+
value: 24.215
|
853 |
+
- type: map_at_5
|
854 |
+
value: 25.157
|
855 |
+
- type: mrr_at_1
|
856 |
+
value: 24.708
|
857 |
+
- type: mrr_at_10
|
858 |
+
value: 29.971999999999998
|
859 |
+
- type: mrr_at_100
|
860 |
+
value: 30.858
|
861 |
+
- type: mrr_at_1000
|
862 |
+
value: 30.934
|
863 |
+
- type: mrr_at_3
|
864 |
+
value: 28.304000000000002
|
865 |
+
- type: mrr_at_5
|
866 |
+
value: 29.183999999999997
|
867 |
+
- type: ndcg_at_1
|
868 |
+
value: 24.708
|
869 |
+
- type: ndcg_at_10
|
870 |
+
value: 29.676000000000002
|
871 |
+
- type: ndcg_at_100
|
872 |
+
value: 34.656
|
873 |
+
- type: ndcg_at_1000
|
874 |
+
value: 37.588
|
875 |
+
- type: ndcg_at_3
|
876 |
+
value: 26.613
|
877 |
+
- type: ndcg_at_5
|
878 |
+
value: 27.919
|
879 |
+
- type: precision_at_1
|
880 |
+
value: 24.708
|
881 |
+
- type: precision_at_10
|
882 |
+
value: 5.01
|
883 |
+
- type: precision_at_100
|
884 |
+
value: 0.876
|
885 |
+
- type: precision_at_1000
|
886 |
+
value: 0.13
|
887 |
+
- type: precision_at_3
|
888 |
+
value: 11.975
|
889 |
+
- type: precision_at_5
|
890 |
+
value: 8.279
|
891 |
+
- type: recall_at_1
|
892 |
+
value: 20.399
|
893 |
+
- type: recall_at_10
|
894 |
+
value: 36.935
|
895 |
+
- type: recall_at_100
|
896 |
+
value: 59.532
|
897 |
+
- type: recall_at_1000
|
898 |
+
value: 80.58
|
899 |
+
- type: recall_at_3
|
900 |
+
value: 27.979
|
901 |
+
- type: recall_at_5
|
902 |
+
value: 31.636999999999997
|
903 |
+
- task:
|
904 |
+
type: Retrieval
|
905 |
+
dataset:
|
906 |
+
type: BeIR/cqadupstack
|
907 |
+
name: MTEB CQADupstackUnixRetrieval
|
908 |
+
config: default
|
909 |
+
split: test
|
910 |
+
revision: None
|
911 |
+
metrics:
|
912 |
+
- type: map_at_1
|
913 |
+
value: 27.606
|
914 |
+
- type: map_at_10
|
915 |
+
value: 34.213
|
916 |
+
- type: map_at_100
|
917 |
+
value: 35.339999999999996
|
918 |
+
- type: map_at_1000
|
919 |
+
value: 35.458
|
920 |
+
- type: map_at_3
|
921 |
+
value: 31.987
|
922 |
+
- type: map_at_5
|
923 |
+
value: 33.322
|
924 |
+
- type: mrr_at_1
|
925 |
+
value: 31.53
|
926 |
+
- type: mrr_at_10
|
927 |
+
value: 37.911
|
928 |
+
- type: mrr_at_100
|
929 |
+
value: 38.879000000000005
|
930 |
+
- type: mrr_at_1000
|
931 |
+
value: 38.956
|
932 |
+
- type: mrr_at_3
|
933 |
+
value: 35.868
|
934 |
+
- type: mrr_at_5
|
935 |
+
value: 37.047999999999995
|
936 |
+
- type: ndcg_at_1
|
937 |
+
value: 31.53
|
938 |
+
- type: ndcg_at_10
|
939 |
+
value: 38.312000000000005
|
940 |
+
- type: ndcg_at_100
|
941 |
+
value: 43.812
|
942 |
+
- type: ndcg_at_1000
|
943 |
+
value: 46.414
|
944 |
+
- type: ndcg_at_3
|
945 |
+
value: 34.319
|
946 |
+
- type: ndcg_at_5
|
947 |
+
value: 36.312
|
948 |
+
- type: precision_at_1
|
949 |
+
value: 31.53
|
950 |
+
- type: precision_at_10
|
951 |
+
value: 5.970000000000001
|
952 |
+
- type: precision_at_100
|
953 |
+
value: 0.9939999999999999
|
954 |
+
- type: precision_at_1000
|
955 |
+
value: 0.133
|
956 |
+
- type: precision_at_3
|
957 |
+
value: 14.738999999999999
|
958 |
+
- type: precision_at_5
|
959 |
+
value: 10.242999999999999
|
960 |
+
- type: recall_at_1
|
961 |
+
value: 27.606
|
962 |
+
- type: recall_at_10
|
963 |
+
value: 47.136
|
964 |
+
- type: recall_at_100
|
965 |
+
value: 71.253
|
966 |
+
- type: recall_at_1000
|
967 |
+
value: 89.39399999999999
|
968 |
+
- type: recall_at_3
|
969 |
+
value: 36.342
|
970 |
+
- type: recall_at_5
|
971 |
+
value: 41.388999999999996
|
972 |
+
- task:
|
973 |
+
type: Retrieval
|
974 |
+
dataset:
|
975 |
+
type: BeIR/cqadupstack
|
976 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
977 |
+
config: default
|
978 |
+
split: test
|
979 |
+
revision: None
|
980 |
+
metrics:
|
981 |
+
- type: map_at_1
|
982 |
+
value: 24.855
|
983 |
+
- type: map_at_10
|
984 |
+
value: 31.963
|
985 |
+
- type: map_at_100
|
986 |
+
value: 33.371
|
987 |
+
- type: map_at_1000
|
988 |
+
value: 33.584
|
989 |
+
- type: map_at_3
|
990 |
+
value: 29.543999999999997
|
991 |
+
- type: map_at_5
|
992 |
+
value: 30.793
|
993 |
+
- type: mrr_at_1
|
994 |
+
value: 29.644
|
995 |
+
- type: mrr_at_10
|
996 |
+
value: 35.601
|
997 |
+
- type: mrr_at_100
|
998 |
+
value: 36.551
|
999 |
+
- type: mrr_at_1000
|
1000 |
+
value: 36.623
|
1001 |
+
- type: mrr_at_3
|
1002 |
+
value: 33.399
|
1003 |
+
- type: mrr_at_5
|
1004 |
+
value: 34.575
|
1005 |
+
- type: ndcg_at_1
|
1006 |
+
value: 29.644
|
1007 |
+
- type: ndcg_at_10
|
1008 |
+
value: 36.521
|
1009 |
+
- type: ndcg_at_100
|
1010 |
+
value: 42.087
|
1011 |
+
- type: ndcg_at_1000
|
1012 |
+
value: 45.119
|
1013 |
+
- type: ndcg_at_3
|
1014 |
+
value: 32.797
|
1015 |
+
- type: ndcg_at_5
|
1016 |
+
value: 34.208
|
1017 |
+
- type: precision_at_1
|
1018 |
+
value: 29.644
|
1019 |
+
- type: precision_at_10
|
1020 |
+
value: 6.7
|
1021 |
+
- type: precision_at_100
|
1022 |
+
value: 1.374
|
1023 |
+
- type: precision_at_1000
|
1024 |
+
value: 0.22899999999999998
|
1025 |
+
- type: precision_at_3
|
1026 |
+
value: 15.152
|
1027 |
+
- type: precision_at_5
|
1028 |
+
value: 10.671999999999999
|
1029 |
+
- type: recall_at_1
|
1030 |
+
value: 24.855
|
1031 |
+
- type: recall_at_10
|
1032 |
+
value: 45.449
|
1033 |
+
- type: recall_at_100
|
1034 |
+
value: 70.921
|
1035 |
+
- type: recall_at_1000
|
1036 |
+
value: 90.629
|
1037 |
+
- type: recall_at_3
|
1038 |
+
value: 33.526
|
1039 |
+
- type: recall_at_5
|
1040 |
+
value: 37.848
|
1041 |
+
- task:
|
1042 |
+
type: Retrieval
|
1043 |
+
dataset:
|
1044 |
+
type: BeIR/cqadupstack
|
1045 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1046 |
+
config: default
|
1047 |
+
split: test
|
1048 |
+
revision: None
|
1049 |
+
metrics:
|
1050 |
+
- type: map_at_1
|
1051 |
+
value: 24.781
|
1052 |
+
- type: map_at_10
|
1053 |
+
value: 30.020999999999997
|
1054 |
+
- type: map_at_100
|
1055 |
+
value: 30.948999999999998
|
1056 |
+
- type: map_at_1000
|
1057 |
+
value: 31.05
|
1058 |
+
- type: map_at_3
|
1059 |
+
value: 28.412
|
1060 |
+
- type: map_at_5
|
1061 |
+
value: 29.193
|
1062 |
+
- type: mrr_at_1
|
1063 |
+
value: 27.172
|
1064 |
+
- type: mrr_at_10
|
1065 |
+
value: 32.309
|
1066 |
+
- type: mrr_at_100
|
1067 |
+
value: 33.164
|
1068 |
+
- type: mrr_at_1000
|
1069 |
+
value: 33.239999999999995
|
1070 |
+
- type: mrr_at_3
|
1071 |
+
value: 30.775999999999996
|
1072 |
+
- type: mrr_at_5
|
1073 |
+
value: 31.562
|
1074 |
+
- type: ndcg_at_1
|
1075 |
+
value: 27.172
|
1076 |
+
- type: ndcg_at_10
|
1077 |
+
value: 33.178999999999995
|
1078 |
+
- type: ndcg_at_100
|
1079 |
+
value: 37.949
|
1080 |
+
- type: ndcg_at_1000
|
1081 |
+
value: 40.635
|
1082 |
+
- type: ndcg_at_3
|
1083 |
+
value: 30.107
|
1084 |
+
- type: ndcg_at_5
|
1085 |
+
value: 31.36
|
1086 |
+
- type: precision_at_1
|
1087 |
+
value: 27.172
|
1088 |
+
- type: precision_at_10
|
1089 |
+
value: 4.769
|
1090 |
+
- type: precision_at_100
|
1091 |
+
value: 0.769
|
1092 |
+
- type: precision_at_1000
|
1093 |
+
value: 0.109
|
1094 |
+
- type: precision_at_3
|
1095 |
+
value: 12.261
|
1096 |
+
- type: precision_at_5
|
1097 |
+
value: 8.17
|
1098 |
+
- type: recall_at_1
|
1099 |
+
value: 24.781
|
1100 |
+
- type: recall_at_10
|
1101 |
+
value: 40.699000000000005
|
1102 |
+
- type: recall_at_100
|
1103 |
+
value: 62.866
|
1104 |
+
- type: recall_at_1000
|
1105 |
+
value: 83.11699999999999
|
1106 |
+
- type: recall_at_3
|
1107 |
+
value: 32.269999999999996
|
1108 |
+
- type: recall_at_5
|
1109 |
+
value: 35.443999999999996
|
1110 |
+
- task:
|
1111 |
+
type: Retrieval
|
1112 |
+
dataset:
|
1113 |
+
type: climate-fever
|
1114 |
+
name: MTEB ClimateFEVER
|
1115 |
+
config: default
|
1116 |
+
split: test
|
1117 |
+
revision: None
|
1118 |
+
metrics:
|
1119 |
+
- type: map_at_1
|
1120 |
+
value: 5.2139999999999995
|
1121 |
+
- type: map_at_10
|
1122 |
+
value: 9.986
|
1123 |
+
- type: map_at_100
|
1124 |
+
value: 11.343
|
1125 |
+
- type: map_at_1000
|
1126 |
+
value: 11.55
|
1127 |
+
- type: map_at_3
|
1128 |
+
value: 7.961
|
1129 |
+
- type: map_at_5
|
1130 |
+
value: 8.967
|
1131 |
+
- type: mrr_at_1
|
1132 |
+
value: 12.052
|
1133 |
+
- type: mrr_at_10
|
1134 |
+
value: 20.165
|
1135 |
+
- type: mrr_at_100
|
1136 |
+
value: 21.317
|
1137 |
+
- type: mrr_at_1000
|
1138 |
+
value: 21.399
|
1139 |
+
- type: mrr_at_3
|
1140 |
+
value: 17.079
|
1141 |
+
- type: mrr_at_5
|
1142 |
+
value: 18.695
|
1143 |
+
- type: ndcg_at_1
|
1144 |
+
value: 12.052
|
1145 |
+
- type: ndcg_at_10
|
1146 |
+
value: 15.375
|
1147 |
+
- type: ndcg_at_100
|
1148 |
+
value: 21.858
|
1149 |
+
- type: ndcg_at_1000
|
1150 |
+
value: 26.145000000000003
|
1151 |
+
- type: ndcg_at_3
|
1152 |
+
value: 11.334
|
1153 |
+
- type: ndcg_at_5
|
1154 |
+
value: 12.798000000000002
|
1155 |
+
- type: precision_at_1
|
1156 |
+
value: 12.052
|
1157 |
+
- type: precision_at_10
|
1158 |
+
value: 5.16
|
1159 |
+
- type: precision_at_100
|
1160 |
+
value: 1.206
|
1161 |
+
- type: precision_at_1000
|
1162 |
+
value: 0.198
|
1163 |
+
- type: precision_at_3
|
1164 |
+
value: 8.73
|
1165 |
+
- type: precision_at_5
|
1166 |
+
value: 7.114
|
1167 |
+
- type: recall_at_1
|
1168 |
+
value: 5.2139999999999995
|
1169 |
+
- type: recall_at_10
|
1170 |
+
value: 20.669999999999998
|
1171 |
+
- type: recall_at_100
|
1172 |
+
value: 43.901
|
1173 |
+
- type: recall_at_1000
|
1174 |
+
value: 68.447
|
1175 |
+
- type: recall_at_3
|
1176 |
+
value: 11.049000000000001
|
1177 |
+
- type: recall_at_5
|
1178 |
+
value: 14.652999999999999
|
1179 |
+
- task:
|
1180 |
+
type: Retrieval
|
1181 |
+
dataset:
|
1182 |
+
type: dbpedia-entity
|
1183 |
+
name: MTEB DBPedia
|
1184 |
+
config: default
|
1185 |
+
split: test
|
1186 |
+
revision: None
|
1187 |
+
metrics:
|
1188 |
+
- type: map_at_1
|
1189 |
+
value: 8.511000000000001
|
1190 |
+
- type: map_at_10
|
1191 |
+
value: 19.503
|
1192 |
+
- type: map_at_100
|
1193 |
+
value: 27.46
|
1194 |
+
- type: map_at_1000
|
1195 |
+
value: 29.187
|
1196 |
+
- type: map_at_3
|
1197 |
+
value: 14.030999999999999
|
1198 |
+
- type: map_at_5
|
1199 |
+
value: 16.329
|
1200 |
+
- type: mrr_at_1
|
1201 |
+
value: 63.74999999999999
|
1202 |
+
- type: mrr_at_10
|
1203 |
+
value: 73.419
|
1204 |
+
- type: mrr_at_100
|
1205 |
+
value: 73.691
|
1206 |
+
- type: mrr_at_1000
|
1207 |
+
value: 73.697
|
1208 |
+
- type: mrr_at_3
|
1209 |
+
value: 71.792
|
1210 |
+
- type: mrr_at_5
|
1211 |
+
value: 72.979
|
1212 |
+
- type: ndcg_at_1
|
1213 |
+
value: 53.125
|
1214 |
+
- type: ndcg_at_10
|
1215 |
+
value: 41.02
|
1216 |
+
- type: ndcg_at_100
|
1217 |
+
value: 45.407
|
1218 |
+
- type: ndcg_at_1000
|
1219 |
+
value: 52.68000000000001
|
1220 |
+
- type: ndcg_at_3
|
1221 |
+
value: 46.088
|
1222 |
+
- type: ndcg_at_5
|
1223 |
+
value: 43.236000000000004
|
1224 |
+
- type: precision_at_1
|
1225 |
+
value: 63.74999999999999
|
1226 |
+
- type: precision_at_10
|
1227 |
+
value: 32.35
|
1228 |
+
- type: precision_at_100
|
1229 |
+
value: 10.363
|
1230 |
+
- type: precision_at_1000
|
1231 |
+
value: 2.18
|
1232 |
+
- type: precision_at_3
|
1233 |
+
value: 49.667
|
1234 |
+
- type: precision_at_5
|
1235 |
+
value: 41.5
|
1236 |
+
- type: recall_at_1
|
1237 |
+
value: 8.511000000000001
|
1238 |
+
- type: recall_at_10
|
1239 |
+
value: 24.851
|
1240 |
+
- type: recall_at_100
|
1241 |
+
value: 50.745
|
1242 |
+
- type: recall_at_1000
|
1243 |
+
value: 73.265
|
1244 |
+
- type: recall_at_3
|
1245 |
+
value: 15.716
|
1246 |
+
- type: recall_at_5
|
1247 |
+
value: 19.256
|
1248 |
+
- task:
|
1249 |
+
type: Classification
|
1250 |
+
dataset:
|
1251 |
+
type: mteb/emotion
|
1252 |
+
name: MTEB EmotionClassification
|
1253 |
+
config: default
|
1254 |
+
split: test
|
1255 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1256 |
+
metrics:
|
1257 |
+
- type: accuracy
|
1258 |
+
value: 49.43500000000001
|
1259 |
+
- type: f1
|
1260 |
+
value: 44.56288273966374
|
1261 |
+
- task:
|
1262 |
+
type: Retrieval
|
1263 |
+
dataset:
|
1264 |
+
type: fever
|
1265 |
+
name: MTEB FEVER
|
1266 |
+
config: default
|
1267 |
+
split: test
|
1268 |
+
revision: None
|
1269 |
+
metrics:
|
1270 |
+
- type: map_at_1
|
1271 |
+
value: 40.858
|
1272 |
+
- type: map_at_10
|
1273 |
+
value: 52.276
|
1274 |
+
- type: map_at_100
|
1275 |
+
value: 52.928
|
1276 |
+
- type: map_at_1000
|
1277 |
+
value: 52.966
|
1278 |
+
- type: map_at_3
|
1279 |
+
value: 49.729
|
1280 |
+
- type: map_at_5
|
1281 |
+
value: 51.27
|
1282 |
+
- type: mrr_at_1
|
1283 |
+
value: 43.624
|
1284 |
+
- type: mrr_at_10
|
1285 |
+
value: 55.22899999999999
|
1286 |
+
- type: mrr_at_100
|
1287 |
+
value: 55.823
|
1288 |
+
- type: mrr_at_1000
|
1289 |
+
value: 55.85
|
1290 |
+
- type: mrr_at_3
|
1291 |
+
value: 52.739999999999995
|
1292 |
+
- type: mrr_at_5
|
1293 |
+
value: 54.251000000000005
|
1294 |
+
- type: ndcg_at_1
|
1295 |
+
value: 43.624
|
1296 |
+
- type: ndcg_at_10
|
1297 |
+
value: 58.23500000000001
|
1298 |
+
- type: ndcg_at_100
|
1299 |
+
value: 61.315
|
1300 |
+
- type: ndcg_at_1000
|
1301 |
+
value: 62.20099999999999
|
1302 |
+
- type: ndcg_at_3
|
1303 |
+
value: 53.22
|
1304 |
+
- type: ndcg_at_5
|
1305 |
+
value: 55.88999999999999
|
1306 |
+
- type: precision_at_1
|
1307 |
+
value: 43.624
|
1308 |
+
- type: precision_at_10
|
1309 |
+
value: 8.068999999999999
|
1310 |
+
- type: precision_at_100
|
1311 |
+
value: 0.975
|
1312 |
+
- type: precision_at_1000
|
1313 |
+
value: 0.107
|
1314 |
+
- type: precision_at_3
|
1315 |
+
value: 21.752
|
1316 |
+
- type: precision_at_5
|
1317 |
+
value: 14.515
|
1318 |
+
- type: recall_at_1
|
1319 |
+
value: 40.858
|
1320 |
+
- type: recall_at_10
|
1321 |
+
value: 73.744
|
1322 |
+
- type: recall_at_100
|
1323 |
+
value: 87.667
|
1324 |
+
- type: recall_at_1000
|
1325 |
+
value: 94.15599999999999
|
1326 |
+
- type: recall_at_3
|
1327 |
+
value: 60.287
|
1328 |
+
- type: recall_at_5
|
1329 |
+
value: 66.703
|
1330 |
+
- task:
|
1331 |
+
type: Retrieval
|
1332 |
+
dataset:
|
1333 |
+
type: fiqa
|
1334 |
+
name: MTEB FiQA2018
|
1335 |
+
config: default
|
1336 |
+
split: test
|
1337 |
+
revision: None
|
1338 |
+
metrics:
|
1339 |
+
- type: map_at_1
|
1340 |
+
value: 17.864
|
1341 |
+
- type: map_at_10
|
1342 |
+
value: 28.592000000000002
|
1343 |
+
- type: map_at_100
|
1344 |
+
value: 30.165
|
1345 |
+
- type: map_at_1000
|
1346 |
+
value: 30.364
|
1347 |
+
- type: map_at_3
|
1348 |
+
value: 24.586
|
1349 |
+
- type: map_at_5
|
1350 |
+
value: 26.717000000000002
|
1351 |
+
- type: mrr_at_1
|
1352 |
+
value: 35.031
|
1353 |
+
- type: mrr_at_10
|
1354 |
+
value: 43.876
|
1355 |
+
- type: mrr_at_100
|
1356 |
+
value: 44.683
|
1357 |
+
- type: mrr_at_1000
|
1358 |
+
value: 44.736
|
1359 |
+
- type: mrr_at_3
|
1360 |
+
value: 40.998000000000005
|
1361 |
+
- type: mrr_at_5
|
1362 |
+
value: 42.595
|
1363 |
+
- type: ndcg_at_1
|
1364 |
+
value: 35.031
|
1365 |
+
- type: ndcg_at_10
|
1366 |
+
value: 36.368
|
1367 |
+
- type: ndcg_at_100
|
1368 |
+
value: 42.472
|
1369 |
+
- type: ndcg_at_1000
|
1370 |
+
value: 45.973000000000006
|
1371 |
+
- type: ndcg_at_3
|
1372 |
+
value: 31.915
|
1373 |
+
- type: ndcg_at_5
|
1374 |
+
value: 33.394
|
1375 |
+
- type: precision_at_1
|
1376 |
+
value: 35.031
|
1377 |
+
- type: precision_at_10
|
1378 |
+
value: 10.139
|
1379 |
+
- type: precision_at_100
|
1380 |
+
value: 1.6420000000000001
|
1381 |
+
- type: precision_at_1000
|
1382 |
+
value: 0.22699999999999998
|
1383 |
+
- type: precision_at_3
|
1384 |
+
value: 21.142
|
1385 |
+
- type: precision_at_5
|
1386 |
+
value: 15.772
|
1387 |
+
- type: recall_at_1
|
1388 |
+
value: 17.864
|
1389 |
+
- type: recall_at_10
|
1390 |
+
value: 43.991
|
1391 |
+
- type: recall_at_100
|
1392 |
+
value: 66.796
|
1393 |
+
- type: recall_at_1000
|
1394 |
+
value: 87.64
|
1395 |
+
- type: recall_at_3
|
1396 |
+
value: 28.915999999999997
|
1397 |
+
- type: recall_at_5
|
1398 |
+
value: 35.185
|
1399 |
+
- task:
|
1400 |
+
type: Retrieval
|
1401 |
+
dataset:
|
1402 |
+
type: hotpotqa
|
1403 |
+
name: MTEB HotpotQA
|
1404 |
+
config: default
|
1405 |
+
split: test
|
1406 |
+
revision: None
|
1407 |
+
metrics:
|
1408 |
+
- type: map_at_1
|
1409 |
+
value: 36.556
|
1410 |
+
- type: map_at_10
|
1411 |
+
value: 53.056000000000004
|
1412 |
+
- type: map_at_100
|
1413 |
+
value: 53.909
|
1414 |
+
- type: map_at_1000
|
1415 |
+
value: 53.98
|
1416 |
+
- type: map_at_3
|
1417 |
+
value: 49.982
|
1418 |
+
- type: map_at_5
|
1419 |
+
value: 51.9
|
1420 |
+
- type: mrr_at_1
|
1421 |
+
value: 73.113
|
1422 |
+
- type: mrr_at_10
|
1423 |
+
value: 79.381
|
1424 |
+
- type: mrr_at_100
|
1425 |
+
value: 79.60300000000001
|
1426 |
+
- type: mrr_at_1000
|
1427 |
+
value: 79.617
|
1428 |
+
- type: mrr_at_3
|
1429 |
+
value: 78.298
|
1430 |
+
- type: mrr_at_5
|
1431 |
+
value: 78.995
|
1432 |
+
- type: ndcg_at_1
|
1433 |
+
value: 73.113
|
1434 |
+
- type: ndcg_at_10
|
1435 |
+
value: 62.21
|
1436 |
+
- type: ndcg_at_100
|
1437 |
+
value: 65.242
|
1438 |
+
- type: ndcg_at_1000
|
1439 |
+
value: 66.667
|
1440 |
+
- type: ndcg_at_3
|
1441 |
+
value: 57.717
|
1442 |
+
- type: ndcg_at_5
|
1443 |
+
value: 60.224
|
1444 |
+
- type: precision_at_1
|
1445 |
+
value: 73.113
|
1446 |
+
- type: precision_at_10
|
1447 |
+
value: 12.842999999999998
|
1448 |
+
- type: precision_at_100
|
1449 |
+
value: 1.522
|
1450 |
+
- type: precision_at_1000
|
1451 |
+
value: 0.17099999999999999
|
1452 |
+
- type: precision_at_3
|
1453 |
+
value: 36.178
|
1454 |
+
- type: precision_at_5
|
1455 |
+
value: 23.695
|
1456 |
+
- type: recall_at_1
|
1457 |
+
value: 36.556
|
1458 |
+
- type: recall_at_10
|
1459 |
+
value: 64.213
|
1460 |
+
- type: recall_at_100
|
1461 |
+
value: 76.077
|
1462 |
+
- type: recall_at_1000
|
1463 |
+
value: 85.53699999999999
|
1464 |
+
- type: recall_at_3
|
1465 |
+
value: 54.266999999999996
|
1466 |
+
- type: recall_at_5
|
1467 |
+
value: 59.236999999999995
|
1468 |
+
- task:
|
1469 |
+
type: Classification
|
1470 |
+
dataset:
|
1471 |
+
type: mteb/imdb
|
1472 |
+
name: MTEB ImdbClassification
|
1473 |
+
config: default
|
1474 |
+
split: test
|
1475 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1476 |
+
metrics:
|
1477 |
+
- type: accuracy
|
1478 |
+
value: 75.958
|
1479 |
+
- type: ap
|
1480 |
+
value: 69.82869527654348
|
1481 |
+
- type: f1
|
1482 |
+
value: 75.89120903005633
|
1483 |
+
- task:
|
1484 |
+
type: Retrieval
|
1485 |
+
dataset:
|
1486 |
+
type: msmarco
|
1487 |
+
name: MTEB MSMARCO
|
1488 |
+
config: default
|
1489 |
+
split: dev
|
1490 |
+
revision: None
|
1491 |
+
metrics:
|
1492 |
+
- type: map_at_1
|
1493 |
+
value: 23.608
|
1494 |
+
- type: map_at_10
|
1495 |
+
value: 36.144
|
1496 |
+
- type: map_at_100
|
1497 |
+
value: 37.244
|
1498 |
+
- type: map_at_1000
|
1499 |
+
value: 37.291999999999994
|
1500 |
+
- type: map_at_3
|
1501 |
+
value: 32.287
|
1502 |
+
- type: map_at_5
|
1503 |
+
value: 34.473
|
1504 |
+
- type: mrr_at_1
|
1505 |
+
value: 24.226
|
1506 |
+
- type: mrr_at_10
|
1507 |
+
value: 36.711
|
1508 |
+
- type: mrr_at_100
|
1509 |
+
value: 37.758
|
1510 |
+
- type: mrr_at_1000
|
1511 |
+
value: 37.8
|
1512 |
+
- type: mrr_at_3
|
1513 |
+
value: 32.92
|
1514 |
+
- type: mrr_at_5
|
1515 |
+
value: 35.104
|
1516 |
+
- type: ndcg_at_1
|
1517 |
+
value: 24.269
|
1518 |
+
- type: ndcg_at_10
|
1519 |
+
value: 43.138
|
1520 |
+
- type: ndcg_at_100
|
1521 |
+
value: 48.421
|
1522 |
+
- type: ndcg_at_1000
|
1523 |
+
value: 49.592000000000006
|
1524 |
+
- type: ndcg_at_3
|
1525 |
+
value: 35.269
|
1526 |
+
- type: ndcg_at_5
|
1527 |
+
value: 39.175
|
1528 |
+
- type: precision_at_1
|
1529 |
+
value: 24.269
|
1530 |
+
- type: precision_at_10
|
1531 |
+
value: 6.755999999999999
|
1532 |
+
- type: precision_at_100
|
1533 |
+
value: 0.941
|
1534 |
+
- type: precision_at_1000
|
1535 |
+
value: 0.104
|
1536 |
+
- type: precision_at_3
|
1537 |
+
value: 14.938
|
1538 |
+
- type: precision_at_5
|
1539 |
+
value: 10.934000000000001
|
1540 |
+
- type: recall_at_1
|
1541 |
+
value: 23.608
|
1542 |
+
- type: recall_at_10
|
1543 |
+
value: 64.679
|
1544 |
+
- type: recall_at_100
|
1545 |
+
value: 89.027
|
1546 |
+
- type: recall_at_1000
|
1547 |
+
value: 97.91
|
1548 |
+
- type: recall_at_3
|
1549 |
+
value: 43.25
|
1550 |
+
- type: recall_at_5
|
1551 |
+
value: 52.617000000000004
|
1552 |
+
- task:
|
1553 |
+
type: Classification
|
1554 |
+
dataset:
|
1555 |
+
type: mteb/mtop_domain
|
1556 |
+
name: MTEB MTOPDomainClassification (en)
|
1557 |
+
config: en
|
1558 |
+
split: test
|
1559 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1560 |
+
metrics:
|
1561 |
+
- type: accuracy
|
1562 |
+
value: 93.21477428180576
|
1563 |
+
- type: f1
|
1564 |
+
value: 92.92502305092152
|
1565 |
+
- task:
|
1566 |
+
type: Classification
|
1567 |
+
dataset:
|
1568 |
+
type: mteb/mtop_intent
|
1569 |
+
name: MTEB MTOPIntentClassification (en)
|
1570 |
+
config: en
|
1571 |
+
split: test
|
1572 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1573 |
+
metrics:
|
1574 |
+
- type: accuracy
|
1575 |
+
value: 74.76744186046511
|
1576 |
+
- type: f1
|
1577 |
+
value: 59.19855520057899
|
1578 |
+
- task:
|
1579 |
+
type: Classification
|
1580 |
+
dataset:
|
1581 |
+
type: mteb/amazon_massive_intent
|
1582 |
+
name: MTEB MassiveIntentClassification (en)
|
1583 |
+
config: en
|
1584 |
+
split: test
|
1585 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1586 |
+
metrics:
|
1587 |
+
- type: accuracy
|
1588 |
+
value: 72.24613315400134
|
1589 |
+
- type: f1
|
1590 |
+
value: 70.19950395651232
|
1591 |
+
- task:
|
1592 |
+
type: Classification
|
1593 |
+
dataset:
|
1594 |
+
type: mteb/amazon_massive_scenario
|
1595 |
+
name: MTEB MassiveScenarioClassification (en)
|
1596 |
+
config: en
|
1597 |
+
split: test
|
1598 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1599 |
+
metrics:
|
1600 |
+
- type: accuracy
|
1601 |
+
value: 76.75857431069268
|
1602 |
+
- type: f1
|
1603 |
+
value: 76.5433450230191
|
1604 |
+
- task:
|
1605 |
+
type: Clustering
|
1606 |
+
dataset:
|
1607 |
+
type: mteb/medrxiv-clustering-p2p
|
1608 |
+
name: MTEB MedrxivClusteringP2P
|
1609 |
+
config: default
|
1610 |
+
split: test
|
1611 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1612 |
+
metrics:
|
1613 |
+
- type: v_measure
|
1614 |
+
value: 31.525463791623604
|
1615 |
+
- task:
|
1616 |
+
type: Clustering
|
1617 |
+
dataset:
|
1618 |
+
type: mteb/medrxiv-clustering-s2s
|
1619 |
+
name: MTEB MedrxivClusteringS2S
|
1620 |
+
config: default
|
1621 |
+
split: test
|
1622 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1623 |
+
metrics:
|
1624 |
+
- type: v_measure
|
1625 |
+
value: 28.28695907385136
|
1626 |
+
- task:
|
1627 |
+
type: Reranking
|
1628 |
+
dataset:
|
1629 |
+
type: mteb/mind_small
|
1630 |
+
name: MTEB MindSmallReranking
|
1631 |
+
config: default
|
1632 |
+
split: test
|
1633 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1634 |
+
metrics:
|
1635 |
+
- type: map
|
1636 |
+
value: 30.068174046665224
|
1637 |
+
- type: mrr
|
1638 |
+
value: 30.827586642840803
|
1639 |
+
- task:
|
1640 |
+
type: Retrieval
|
1641 |
+
dataset:
|
1642 |
+
type: nfcorpus
|
1643 |
+
name: MTEB NFCorpus
|
1644 |
+
config: default
|
1645 |
+
split: test
|
1646 |
+
revision: None
|
1647 |
+
metrics:
|
1648 |
+
- type: map_at_1
|
1649 |
+
value: 6.322
|
1650 |
+
- type: map_at_10
|
1651 |
+
value: 13.919999999999998
|
1652 |
+
- type: map_at_100
|
1653 |
+
value: 17.416
|
1654 |
+
- type: map_at_1000
|
1655 |
+
value: 18.836
|
1656 |
+
- type: map_at_3
|
1657 |
+
value: 10.111
|
1658 |
+
- type: map_at_5
|
1659 |
+
value: 11.991999999999999
|
1660 |
+
- type: mrr_at_1
|
1661 |
+
value: 48.297000000000004
|
1662 |
+
- type: mrr_at_10
|
1663 |
+
value: 57.114
|
1664 |
+
- type: mrr_at_100
|
1665 |
+
value: 57.713
|
1666 |
+
- type: mrr_at_1000
|
1667 |
+
value: 57.751
|
1668 |
+
- type: mrr_at_3
|
1669 |
+
value: 55.108000000000004
|
1670 |
+
- type: mrr_at_5
|
1671 |
+
value: 56.533
|
1672 |
+
- type: ndcg_at_1
|
1673 |
+
value: 46.44
|
1674 |
+
- type: ndcg_at_10
|
1675 |
+
value: 36.589
|
1676 |
+
- type: ndcg_at_100
|
1677 |
+
value: 33.202
|
1678 |
+
- type: ndcg_at_1000
|
1679 |
+
value: 41.668
|
1680 |
+
- type: ndcg_at_3
|
1681 |
+
value: 41.302
|
1682 |
+
- type: ndcg_at_5
|
1683 |
+
value: 39.829
|
1684 |
+
- type: precision_at_1
|
1685 |
+
value: 47.988
|
1686 |
+
- type: precision_at_10
|
1687 |
+
value: 27.059
|
1688 |
+
- type: precision_at_100
|
1689 |
+
value: 8.235000000000001
|
1690 |
+
- type: precision_at_1000
|
1691 |
+
value: 2.091
|
1692 |
+
- type: precision_at_3
|
1693 |
+
value: 38.184000000000005
|
1694 |
+
- type: precision_at_5
|
1695 |
+
value: 34.365
|
1696 |
+
- type: recall_at_1
|
1697 |
+
value: 6.322
|
1698 |
+
- type: recall_at_10
|
1699 |
+
value: 18.288
|
1700 |
+
- type: recall_at_100
|
1701 |
+
value: 32.580999999999996
|
1702 |
+
- type: recall_at_1000
|
1703 |
+
value: 63.605999999999995
|
1704 |
+
- type: recall_at_3
|
1705 |
+
value: 11.266
|
1706 |
+
- type: recall_at_5
|
1707 |
+
value: 14.69
|
1708 |
+
- task:
|
1709 |
+
type: Retrieval
|
1710 |
+
dataset:
|
1711 |
+
type: nq
|
1712 |
+
name: MTEB NQ
|
1713 |
+
config: default
|
1714 |
+
split: test
|
1715 |
+
revision: None
|
1716 |
+
metrics:
|
1717 |
+
- type: map_at_1
|
1718 |
+
value: 36.586999999999996
|
1719 |
+
- type: map_at_10
|
1720 |
+
value: 52.464
|
1721 |
+
- type: map_at_100
|
1722 |
+
value: 53.384
|
1723 |
+
- type: map_at_1000
|
1724 |
+
value: 53.405
|
1725 |
+
- type: map_at_3
|
1726 |
+
value: 48.408
|
1727 |
+
- type: map_at_5
|
1728 |
+
value: 50.788999999999994
|
1729 |
+
- type: mrr_at_1
|
1730 |
+
value: 40.904
|
1731 |
+
- type: mrr_at_10
|
1732 |
+
value: 54.974000000000004
|
1733 |
+
- type: mrr_at_100
|
1734 |
+
value: 55.60699999999999
|
1735 |
+
- type: mrr_at_1000
|
1736 |
+
value: 55.623
|
1737 |
+
- type: mrr_at_3
|
1738 |
+
value: 51.73799999999999
|
1739 |
+
- type: mrr_at_5
|
1740 |
+
value: 53.638
|
1741 |
+
- type: ndcg_at_1
|
1742 |
+
value: 40.904
|
1743 |
+
- type: ndcg_at_10
|
1744 |
+
value: 59.965999999999994
|
1745 |
+
- type: ndcg_at_100
|
1746 |
+
value: 63.613
|
1747 |
+
- type: ndcg_at_1000
|
1748 |
+
value: 64.064
|
1749 |
+
- type: ndcg_at_3
|
1750 |
+
value: 52.486
|
1751 |
+
- type: ndcg_at_5
|
1752 |
+
value: 56.377
|
1753 |
+
- type: precision_at_1
|
1754 |
+
value: 40.904
|
1755 |
+
- type: precision_at_10
|
1756 |
+
value: 9.551
|
1757 |
+
- type: precision_at_100
|
1758 |
+
value: 1.162
|
1759 |
+
- type: precision_at_1000
|
1760 |
+
value: 0.12
|
1761 |
+
- type: precision_at_3
|
1762 |
+
value: 23.552
|
1763 |
+
- type: precision_at_5
|
1764 |
+
value: 16.436999999999998
|
1765 |
+
- type: recall_at_1
|
1766 |
+
value: 36.586999999999996
|
1767 |
+
- type: recall_at_10
|
1768 |
+
value: 80.094
|
1769 |
+
- type: recall_at_100
|
1770 |
+
value: 95.515
|
1771 |
+
- type: recall_at_1000
|
1772 |
+
value: 98.803
|
1773 |
+
- type: recall_at_3
|
1774 |
+
value: 60.907
|
1775 |
+
- type: recall_at_5
|
1776 |
+
value: 69.817
|
1777 |
+
- task:
|
1778 |
+
type: Retrieval
|
1779 |
+
dataset:
|
1780 |
+
type: quora
|
1781 |
+
name: MTEB QuoraRetrieval
|
1782 |
+
config: default
|
1783 |
+
split: test
|
1784 |
+
revision: None
|
1785 |
+
metrics:
|
1786 |
+
- type: map_at_1
|
1787 |
+
value: 70.422
|
1788 |
+
- type: map_at_10
|
1789 |
+
value: 84.113
|
1790 |
+
- type: map_at_100
|
1791 |
+
value: 84.744
|
1792 |
+
- type: map_at_1000
|
1793 |
+
value: 84.762
|
1794 |
+
- type: map_at_3
|
1795 |
+
value: 81.171
|
1796 |
+
- type: map_at_5
|
1797 |
+
value: 83.039
|
1798 |
+
- type: mrr_at_1
|
1799 |
+
value: 81.12
|
1800 |
+
- type: mrr_at_10
|
1801 |
+
value: 87.277
|
1802 |
+
- type: mrr_at_100
|
1803 |
+
value: 87.384
|
1804 |
+
- type: mrr_at_1000
|
1805 |
+
value: 87.385
|
1806 |
+
- type: mrr_at_3
|
1807 |
+
value: 86.315
|
1808 |
+
- type: mrr_at_5
|
1809 |
+
value: 86.981
|
1810 |
+
- type: ndcg_at_1
|
1811 |
+
value: 81.12
|
1812 |
+
- type: ndcg_at_10
|
1813 |
+
value: 87.92
|
1814 |
+
- type: ndcg_at_100
|
1815 |
+
value: 89.178
|
1816 |
+
- type: ndcg_at_1000
|
1817 |
+
value: 89.29899999999999
|
1818 |
+
- type: ndcg_at_3
|
1819 |
+
value: 85.076
|
1820 |
+
- type: ndcg_at_5
|
1821 |
+
value: 86.67099999999999
|
1822 |
+
- type: precision_at_1
|
1823 |
+
value: 81.12
|
1824 |
+
- type: precision_at_10
|
1825 |
+
value: 13.325999999999999
|
1826 |
+
- type: precision_at_100
|
1827 |
+
value: 1.524
|
1828 |
+
- type: precision_at_1000
|
1829 |
+
value: 0.157
|
1830 |
+
- type: precision_at_3
|
1831 |
+
value: 37.16
|
1832 |
+
- type: precision_at_5
|
1833 |
+
value: 24.456
|
1834 |
+
- type: recall_at_1
|
1835 |
+
value: 70.422
|
1836 |
+
- type: recall_at_10
|
1837 |
+
value: 95.00800000000001
|
1838 |
+
- type: recall_at_100
|
1839 |
+
value: 99.38
|
1840 |
+
- type: recall_at_1000
|
1841 |
+
value: 99.94800000000001
|
1842 |
+
- type: recall_at_3
|
1843 |
+
value: 86.809
|
1844 |
+
- type: recall_at_5
|
1845 |
+
value: 91.334
|
1846 |
+
- task:
|
1847 |
+
type: Clustering
|
1848 |
+
dataset:
|
1849 |
+
type: mteb/reddit-clustering
|
1850 |
+
name: MTEB RedditClustering
|
1851 |
+
config: default
|
1852 |
+
split: test
|
1853 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1854 |
+
metrics:
|
1855 |
+
- type: v_measure
|
1856 |
+
value: 48.18491891699636
|
1857 |
+
- task:
|
1858 |
+
type: Clustering
|
1859 |
+
dataset:
|
1860 |
+
type: mteb/reddit-clustering-p2p
|
1861 |
+
name: MTEB RedditClusteringP2P
|
1862 |
+
config: default
|
1863 |
+
split: test
|
1864 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1865 |
+
metrics:
|
1866 |
+
- type: v_measure
|
1867 |
+
value: 62.190639679711914
|
1868 |
+
- task:
|
1869 |
+
type: Retrieval
|
1870 |
+
dataset:
|
1871 |
+
type: scidocs
|
1872 |
+
name: MTEB SCIDOCS
|
1873 |
+
config: default
|
1874 |
+
split: test
|
1875 |
+
revision: None
|
1876 |
+
metrics:
|
1877 |
+
- type: map_at_1
|
1878 |
+
value: 4.478
|
1879 |
+
- type: map_at_10
|
1880 |
+
value: 11.268
|
1881 |
+
- type: map_at_100
|
1882 |
+
value: 13.129
|
1883 |
+
- type: map_at_1000
|
1884 |
+
value: 13.41
|
1885 |
+
- type: map_at_3
|
1886 |
+
value: 8.103
|
1887 |
+
- type: map_at_5
|
1888 |
+
value: 9.609
|
1889 |
+
- type: mrr_at_1
|
1890 |
+
value: 22
|
1891 |
+
- type: mrr_at_10
|
1892 |
+
value: 32.248
|
1893 |
+
- type: mrr_at_100
|
1894 |
+
value: 33.355000000000004
|
1895 |
+
- type: mrr_at_1000
|
1896 |
+
value: 33.42
|
1897 |
+
- type: mrr_at_3
|
1898 |
+
value: 29.15
|
1899 |
+
- type: mrr_at_5
|
1900 |
+
value: 30.785
|
1901 |
+
- type: ndcg_at_1
|
1902 |
+
value: 22
|
1903 |
+
- type: ndcg_at_10
|
1904 |
+
value: 18.990000000000002
|
1905 |
+
- type: ndcg_at_100
|
1906 |
+
value: 26.302999999999997
|
1907 |
+
- type: ndcg_at_1000
|
1908 |
+
value: 31.537
|
1909 |
+
- type: ndcg_at_3
|
1910 |
+
value: 18.034
|
1911 |
+
- type: ndcg_at_5
|
1912 |
+
value: 15.655
|
1913 |
+
- type: precision_at_1
|
1914 |
+
value: 22
|
1915 |
+
- type: precision_at_10
|
1916 |
+
value: 9.91
|
1917 |
+
- type: precision_at_100
|
1918 |
+
value: 2.0420000000000003
|
1919 |
+
- type: precision_at_1000
|
1920 |
+
value: 0.33
|
1921 |
+
- type: precision_at_3
|
1922 |
+
value: 16.933
|
1923 |
+
- type: precision_at_5
|
1924 |
+
value: 13.719999999999999
|
1925 |
+
- type: recall_at_1
|
1926 |
+
value: 4.478
|
1927 |
+
- type: recall_at_10
|
1928 |
+
value: 20.087
|
1929 |
+
- type: recall_at_100
|
1930 |
+
value: 41.457
|
1931 |
+
- type: recall_at_1000
|
1932 |
+
value: 67.10199999999999
|
1933 |
+
- type: recall_at_3
|
1934 |
+
value: 10.313
|
1935 |
+
- type: recall_at_5
|
1936 |
+
value: 13.927999999999999
|
1937 |
+
- task:
|
1938 |
+
type: STS
|
1939 |
+
dataset:
|
1940 |
+
type: mteb/sickr-sts
|
1941 |
+
name: MTEB SICK-R
|
1942 |
+
config: default
|
1943 |
+
split: test
|
1944 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1945 |
+
metrics:
|
1946 |
+
- type: cos_sim_pearson
|
1947 |
+
value: 84.27341574565806
|
1948 |
+
- type: cos_sim_spearman
|
1949 |
+
value: 79.66419880841734
|
1950 |
+
- type: euclidean_pearson
|
1951 |
+
value: 81.32473321838208
|
1952 |
+
- type: euclidean_spearman
|
1953 |
+
value: 79.29828832085133
|
1954 |
+
- type: manhattan_pearson
|
1955 |
+
value: 81.25554065883132
|
1956 |
+
- type: manhattan_spearman
|
1957 |
+
value: 79.23275543279853
|
1958 |
+
- task:
|
1959 |
+
type: STS
|
1960 |
+
dataset:
|
1961 |
+
type: mteb/sts12-sts
|
1962 |
+
name: MTEB STS12
|
1963 |
+
config: default
|
1964 |
+
split: test
|
1965 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1966 |
+
metrics:
|
1967 |
+
- type: cos_sim_pearson
|
1968 |
+
value: 83.40468875905418
|
1969 |
+
- type: cos_sim_spearman
|
1970 |
+
value: 74.2189990321174
|
1971 |
+
- type: euclidean_pearson
|
1972 |
+
value: 80.74376966290956
|
1973 |
+
- type: euclidean_spearman
|
1974 |
+
value: 74.97663839079335
|
1975 |
+
- type: manhattan_pearson
|
1976 |
+
value: 80.69779331646207
|
1977 |
+
- type: manhattan_spearman
|
1978 |
+
value: 75.00225252917613
|
1979 |
+
- task:
|
1980 |
+
type: STS
|
1981 |
+
dataset:
|
1982 |
+
type: mteb/sts13-sts
|
1983 |
+
name: MTEB STS13
|
1984 |
+
config: default
|
1985 |
+
split: test
|
1986 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1987 |
+
metrics:
|
1988 |
+
- type: cos_sim_pearson
|
1989 |
+
value: 82.5745290053095
|
1990 |
+
- type: cos_sim_spearman
|
1991 |
+
value: 83.31401180333397
|
1992 |
+
- type: euclidean_pearson
|
1993 |
+
value: 82.96500607325534
|
1994 |
+
- type: euclidean_spearman
|
1995 |
+
value: 83.8534967935793
|
1996 |
+
- type: manhattan_pearson
|
1997 |
+
value: 82.83112050632508
|
1998 |
+
- type: manhattan_spearman
|
1999 |
+
value: 83.70877296557838
|
2000 |
+
- task:
|
2001 |
+
type: STS
|
2002 |
+
dataset:
|
2003 |
+
type: mteb/sts14-sts
|
2004 |
+
name: MTEB STS14
|
2005 |
+
config: default
|
2006 |
+
split: test
|
2007 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2008 |
+
metrics:
|
2009 |
+
- type: cos_sim_pearson
|
2010 |
+
value: 80.67833656607704
|
2011 |
+
- type: cos_sim_spearman
|
2012 |
+
value: 78.52252410630707
|
2013 |
+
- type: euclidean_pearson
|
2014 |
+
value: 80.071189514343
|
2015 |
+
- type: euclidean_spearman
|
2016 |
+
value: 78.95143545742796
|
2017 |
+
- type: manhattan_pearson
|
2018 |
+
value: 80.0128926165121
|
2019 |
+
- type: manhattan_spearman
|
2020 |
+
value: 78.91236678732628
|
2021 |
+
- task:
|
2022 |
+
type: STS
|
2023 |
+
dataset:
|
2024 |
+
type: mteb/sts15-sts
|
2025 |
+
name: MTEB STS15
|
2026 |
+
config: default
|
2027 |
+
split: test
|
2028 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2029 |
+
metrics:
|
2030 |
+
- type: cos_sim_pearson
|
2031 |
+
value: 87.48437639980746
|
2032 |
+
- type: cos_sim_spearman
|
2033 |
+
value: 88.34876527774259
|
2034 |
+
- type: euclidean_pearson
|
2035 |
+
value: 87.64898081823888
|
2036 |
+
- type: euclidean_spearman
|
2037 |
+
value: 88.58937180804213
|
2038 |
+
- type: manhattan_pearson
|
2039 |
+
value: 87.5942417815288
|
2040 |
+
- type: manhattan_spearman
|
2041 |
+
value: 88.53013922267687
|
2042 |
+
- task:
|
2043 |
+
type: STS
|
2044 |
+
dataset:
|
2045 |
+
type: mteb/sts16-sts
|
2046 |
+
name: MTEB STS16
|
2047 |
+
config: default
|
2048 |
+
split: test
|
2049 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2050 |
+
metrics:
|
2051 |
+
- type: cos_sim_pearson
|
2052 |
+
value: 82.69189187164781
|
2053 |
+
- type: cos_sim_spearman
|
2054 |
+
value: 84.15327883572112
|
2055 |
+
- type: euclidean_pearson
|
2056 |
+
value: 83.64202266685898
|
2057 |
+
- type: euclidean_spearman
|
2058 |
+
value: 84.6219602318862
|
2059 |
+
- type: manhattan_pearson
|
2060 |
+
value: 83.53256698709998
|
2061 |
+
- type: manhattan_spearman
|
2062 |
+
value: 84.49260712904946
|
2063 |
+
- task:
|
2064 |
+
type: STS
|
2065 |
+
dataset:
|
2066 |
+
type: mteb/sts17-crosslingual-sts
|
2067 |
+
name: MTEB STS17 (en-en)
|
2068 |
+
config: en-en
|
2069 |
+
split: test
|
2070 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2071 |
+
metrics:
|
2072 |
+
- type: cos_sim_pearson
|
2073 |
+
value: 87.09508017611589
|
2074 |
+
- type: cos_sim_spearman
|
2075 |
+
value: 87.23010990417097
|
2076 |
+
- type: euclidean_pearson
|
2077 |
+
value: 87.62545569077133
|
2078 |
+
- type: euclidean_spearman
|
2079 |
+
value: 86.71152051711714
|
2080 |
+
- type: manhattan_pearson
|
2081 |
+
value: 87.5057154278377
|
2082 |
+
- type: manhattan_spearman
|
2083 |
+
value: 86.60611898281267
|
2084 |
+
- task:
|
2085 |
+
type: STS
|
2086 |
+
dataset:
|
2087 |
+
type: mteb/sts22-crosslingual-sts
|
2088 |
+
name: MTEB STS22 (en)
|
2089 |
+
config: en
|
2090 |
+
split: test
|
2091 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2092 |
+
metrics:
|
2093 |
+
- type: cos_sim_pearson
|
2094 |
+
value: 61.72129893941176
|
2095 |
+
- type: cos_sim_spearman
|
2096 |
+
value: 62.87871412069194
|
2097 |
+
- type: euclidean_pearson
|
2098 |
+
value: 63.21077648290454
|
2099 |
+
- type: euclidean_spearman
|
2100 |
+
value: 63.03263080805978
|
2101 |
+
- type: manhattan_pearson
|
2102 |
+
value: 63.20740860135976
|
2103 |
+
- type: manhattan_spearman
|
2104 |
+
value: 62.89930471802817
|
2105 |
+
- task:
|
2106 |
+
type: STS
|
2107 |
+
dataset:
|
2108 |
+
type: mteb/stsbenchmark-sts
|
2109 |
+
name: MTEB STSBenchmark
|
2110 |
+
config: default
|
2111 |
+
split: test
|
2112 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2113 |
+
metrics:
|
2114 |
+
- type: cos_sim_pearson
|
2115 |
+
value: 85.039118236799
|
2116 |
+
- type: cos_sim_spearman
|
2117 |
+
value: 86.18102563389962
|
2118 |
+
- type: euclidean_pearson
|
2119 |
+
value: 85.62977041471879
|
2120 |
+
- type: euclidean_spearman
|
2121 |
+
value: 86.02478990544347
|
2122 |
+
- type: manhattan_pearson
|
2123 |
+
value: 85.60786740521806
|
2124 |
+
- type: manhattan_spearman
|
2125 |
+
value: 85.99546210442547
|
2126 |
+
- task:
|
2127 |
+
type: Reranking
|
2128 |
+
dataset:
|
2129 |
+
type: mteb/scidocs-reranking
|
2130 |
+
name: MTEB SciDocsRR
|
2131 |
+
config: default
|
2132 |
+
split: test
|
2133 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2134 |
+
metrics:
|
2135 |
+
- type: map
|
2136 |
+
value: 82.89875069737266
|
2137 |
+
- type: mrr
|
2138 |
+
value: 95.42621322033087
|
2139 |
+
- task:
|
2140 |
+
type: Retrieval
|
2141 |
+
dataset:
|
2142 |
+
type: scifact
|
2143 |
+
name: MTEB SciFact
|
2144 |
+
config: default
|
2145 |
+
split: test
|
2146 |
+
revision: None
|
2147 |
+
metrics:
|
2148 |
+
- type: map_at_1
|
2149 |
+
value: 58.660999999999994
|
2150 |
+
- type: map_at_10
|
2151 |
+
value: 68.738
|
2152 |
+
- type: map_at_100
|
2153 |
+
value: 69.33200000000001
|
2154 |
+
- type: map_at_1000
|
2155 |
+
value: 69.352
|
2156 |
+
- type: map_at_3
|
2157 |
+
value: 66.502
|
2158 |
+
- type: map_at_5
|
2159 |
+
value: 67.686
|
2160 |
+
- type: mrr_at_1
|
2161 |
+
value: 61.667
|
2162 |
+
- type: mrr_at_10
|
2163 |
+
value: 70.003
|
2164 |
+
- type: mrr_at_100
|
2165 |
+
value: 70.441
|
2166 |
+
- type: mrr_at_1000
|
2167 |
+
value: 70.46
|
2168 |
+
- type: mrr_at_3
|
2169 |
+
value: 68.278
|
2170 |
+
- type: mrr_at_5
|
2171 |
+
value: 69.194
|
2172 |
+
- type: ndcg_at_1
|
2173 |
+
value: 61.667
|
2174 |
+
- type: ndcg_at_10
|
2175 |
+
value: 73.083
|
2176 |
+
- type: ndcg_at_100
|
2177 |
+
value: 75.56
|
2178 |
+
- type: ndcg_at_1000
|
2179 |
+
value: 76.01400000000001
|
2180 |
+
- type: ndcg_at_3
|
2181 |
+
value: 69.28699999999999
|
2182 |
+
- type: ndcg_at_5
|
2183 |
+
value: 70.85000000000001
|
2184 |
+
- type: precision_at_1
|
2185 |
+
value: 61.667
|
2186 |
+
- type: precision_at_10
|
2187 |
+
value: 9.6
|
2188 |
+
- type: precision_at_100
|
2189 |
+
value: 1.087
|
2190 |
+
- type: precision_at_1000
|
2191 |
+
value: 0.11199999999999999
|
2192 |
+
- type: precision_at_3
|
2193 |
+
value: 27.111
|
2194 |
+
- type: precision_at_5
|
2195 |
+
value: 17.467
|
2196 |
+
- type: recall_at_1
|
2197 |
+
value: 58.660999999999994
|
2198 |
+
- type: recall_at_10
|
2199 |
+
value: 85.02199999999999
|
2200 |
+
- type: recall_at_100
|
2201 |
+
value: 95.933
|
2202 |
+
- type: recall_at_1000
|
2203 |
+
value: 99.333
|
2204 |
+
- type: recall_at_3
|
2205 |
+
value: 74.506
|
2206 |
+
- type: recall_at_5
|
2207 |
+
value: 78.583
|
2208 |
+
- task:
|
2209 |
+
type: PairClassification
|
2210 |
+
dataset:
|
2211 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2212 |
+
name: MTEB SprintDuplicateQuestions
|
2213 |
+
config: default
|
2214 |
+
split: test
|
2215 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2216 |
+
metrics:
|
2217 |
+
- type: cos_sim_accuracy
|
2218 |
+
value: 99.8029702970297
|
2219 |
+
- type: cos_sim_ap
|
2220 |
+
value: 94.87673936635738
|
2221 |
+
- type: cos_sim_f1
|
2222 |
+
value: 90.00502260170768
|
2223 |
+
- type: cos_sim_precision
|
2224 |
+
value: 90.41372351160445
|
2225 |
+
- type: cos_sim_recall
|
2226 |
+
value: 89.60000000000001
|
2227 |
+
- type: dot_accuracy
|
2228 |
+
value: 99.57524752475247
|
2229 |
+
- type: dot_ap
|
2230 |
+
value: 84.81717934496321
|
2231 |
+
- type: dot_f1
|
2232 |
+
value: 78.23026646556059
|
2233 |
+
- type: dot_precision
|
2234 |
+
value: 78.66531850353893
|
2235 |
+
- type: dot_recall
|
2236 |
+
value: 77.8
|
2237 |
+
- type: euclidean_accuracy
|
2238 |
+
value: 99.8029702970297
|
2239 |
+
- type: euclidean_ap
|
2240 |
+
value: 94.74658253135284
|
2241 |
+
- type: euclidean_f1
|
2242 |
+
value: 90.08470353761834
|
2243 |
+
- type: euclidean_precision
|
2244 |
+
value: 89.77159880834161
|
2245 |
+
- type: euclidean_recall
|
2246 |
+
value: 90.4
|
2247 |
+
- type: manhattan_accuracy
|
2248 |
+
value: 99.8
|
2249 |
+
- type: manhattan_ap
|
2250 |
+
value: 94.69224030742787
|
2251 |
+
- type: manhattan_f1
|
2252 |
+
value: 89.9502487562189
|
2253 |
+
- type: manhattan_precision
|
2254 |
+
value: 89.50495049504951
|
2255 |
+
- type: manhattan_recall
|
2256 |
+
value: 90.4
|
2257 |
+
- type: max_accuracy
|
2258 |
+
value: 99.8029702970297
|
2259 |
+
- type: max_ap
|
2260 |
+
value: 94.87673936635738
|
2261 |
+
- type: max_f1
|
2262 |
+
value: 90.08470353761834
|
2263 |
+
- task:
|
2264 |
+
type: Clustering
|
2265 |
+
dataset:
|
2266 |
+
type: mteb/stackexchange-clustering
|
2267 |
+
name: MTEB StackExchangeClustering
|
2268 |
+
config: default
|
2269 |
+
split: test
|
2270 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2271 |
+
metrics:
|
2272 |
+
- type: v_measure
|
2273 |
+
value: 63.906039623153035
|
2274 |
+
- task:
|
2275 |
+
type: Clustering
|
2276 |
+
dataset:
|
2277 |
+
type: mteb/stackexchange-clustering-p2p
|
2278 |
+
name: MTEB StackExchangeClusteringP2P
|
2279 |
+
config: default
|
2280 |
+
split: test
|
2281 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2282 |
+
metrics:
|
2283 |
+
- type: v_measure
|
2284 |
+
value: 32.56053830923281
|
2285 |
+
- task:
|
2286 |
+
type: Reranking
|
2287 |
+
dataset:
|
2288 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2289 |
+
name: MTEB StackOverflowDupQuestions
|
2290 |
+
config: default
|
2291 |
+
split: test
|
2292 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2293 |
+
metrics:
|
2294 |
+
- type: map
|
2295 |
+
value: 50.15326538775145
|
2296 |
+
- type: mrr
|
2297 |
+
value: 50.99279295051355
|
2298 |
+
- task:
|
2299 |
+
type: Summarization
|
2300 |
+
dataset:
|
2301 |
+
type: mteb/summeval
|
2302 |
+
name: MTEB SummEval
|
2303 |
+
config: default
|
2304 |
+
split: test
|
2305 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2306 |
+
metrics:
|
2307 |
+
- type: cos_sim_pearson
|
2308 |
+
value: 31.44030762047337
|
2309 |
+
- type: cos_sim_spearman
|
2310 |
+
value: 31.00910300264562
|
2311 |
+
- type: dot_pearson
|
2312 |
+
value: 26.88257194766013
|
2313 |
+
- type: dot_spearman
|
2314 |
+
value: 27.646202679013577
|
2315 |
+
- task:
|
2316 |
+
type: Retrieval
|
2317 |
+
dataset:
|
2318 |
+
type: trec-covid
|
2319 |
+
name: MTEB TRECCOVID
|
2320 |
+
config: default
|
2321 |
+
split: test
|
2322 |
+
revision: None
|
2323 |
+
metrics:
|
2324 |
+
- type: map_at_1
|
2325 |
+
value: 0.247
|
2326 |
+
- type: map_at_10
|
2327 |
+
value: 1.9429999999999998
|
2328 |
+
- type: map_at_100
|
2329 |
+
value: 10.82
|
2330 |
+
- type: map_at_1000
|
2331 |
+
value: 25.972
|
2332 |
+
- type: map_at_3
|
2333 |
+
value: 0.653
|
2334 |
+
- type: map_at_5
|
2335 |
+
value: 1.057
|
2336 |
+
- type: mrr_at_1
|
2337 |
+
value: 94
|
2338 |
+
- type: mrr_at_10
|
2339 |
+
value: 96.333
|
2340 |
+
- type: mrr_at_100
|
2341 |
+
value: 96.333
|
2342 |
+
- type: mrr_at_1000
|
2343 |
+
value: 96.333
|
2344 |
+
- type: mrr_at_3
|
2345 |
+
value: 96.333
|
2346 |
+
- type: mrr_at_5
|
2347 |
+
value: 96.333
|
2348 |
+
- type: ndcg_at_1
|
2349 |
+
value: 89
|
2350 |
+
- type: ndcg_at_10
|
2351 |
+
value: 79.63799999999999
|
2352 |
+
- type: ndcg_at_100
|
2353 |
+
value: 57.961
|
2354 |
+
- type: ndcg_at_1000
|
2355 |
+
value: 50.733
|
2356 |
+
- type: ndcg_at_3
|
2357 |
+
value: 84.224
|
2358 |
+
- type: ndcg_at_5
|
2359 |
+
value: 82.528
|
2360 |
+
- type: precision_at_1
|
2361 |
+
value: 94
|
2362 |
+
- type: precision_at_10
|
2363 |
+
value: 84.2
|
2364 |
+
- type: precision_at_100
|
2365 |
+
value: 59.36
|
2366 |
+
- type: precision_at_1000
|
2367 |
+
value: 22.738
|
2368 |
+
- type: precision_at_3
|
2369 |
+
value: 88
|
2370 |
+
- type: precision_at_5
|
2371 |
+
value: 86.8
|
2372 |
+
- type: recall_at_1
|
2373 |
+
value: 0.247
|
2374 |
+
- type: recall_at_10
|
2375 |
+
value: 2.131
|
2376 |
+
- type: recall_at_100
|
2377 |
+
value: 14.035
|
2378 |
+
- type: recall_at_1000
|
2379 |
+
value: 47.457
|
2380 |
+
- type: recall_at_3
|
2381 |
+
value: 0.6779999999999999
|
2382 |
+
- type: recall_at_5
|
2383 |
+
value: 1.124
|
2384 |
+
- task:
|
2385 |
+
type: Retrieval
|
2386 |
+
dataset:
|
2387 |
+
type: webis-touche2020
|
2388 |
+
name: MTEB Touche2020
|
2389 |
+
config: default
|
2390 |
+
split: test
|
2391 |
+
revision: None
|
2392 |
+
metrics:
|
2393 |
+
- type: map_at_1
|
2394 |
+
value: 2.603
|
2395 |
+
- type: map_at_10
|
2396 |
+
value: 11.667
|
2397 |
+
- type: map_at_100
|
2398 |
+
value: 16.474
|
2399 |
+
- type: map_at_1000
|
2400 |
+
value: 18.074
|
2401 |
+
- type: map_at_3
|
2402 |
+
value: 6.03
|
2403 |
+
- type: map_at_5
|
2404 |
+
value: 8.067
|
2405 |
+
- type: mrr_at_1
|
2406 |
+
value: 34.694
|
2407 |
+
- type: mrr_at_10
|
2408 |
+
value: 51.063
|
2409 |
+
- type: mrr_at_100
|
2410 |
+
value: 51.908
|
2411 |
+
- type: mrr_at_1000
|
2412 |
+
value: 51.908
|
2413 |
+
- type: mrr_at_3
|
2414 |
+
value: 47.959
|
2415 |
+
- type: mrr_at_5
|
2416 |
+
value: 49.694
|
2417 |
+
- type: ndcg_at_1
|
2418 |
+
value: 32.653
|
2419 |
+
- type: ndcg_at_10
|
2420 |
+
value: 28.305000000000003
|
2421 |
+
- type: ndcg_at_100
|
2422 |
+
value: 35.311
|
2423 |
+
- type: ndcg_at_1000
|
2424 |
+
value: 47.644999999999996
|
2425 |
+
- type: ndcg_at_3
|
2426 |
+
value: 32.187
|
2427 |
+
- type: ndcg_at_5
|
2428 |
+
value: 29.134999999999998
|
2429 |
+
- type: precision_at_1
|
2430 |
+
value: 34.694
|
2431 |
+
- type: precision_at_10
|
2432 |
+
value: 26.122
|
2433 |
+
- type: precision_at_100
|
2434 |
+
value: 6.755
|
2435 |
+
- type: precision_at_1000
|
2436 |
+
value: 1.467
|
2437 |
+
- type: precision_at_3
|
2438 |
+
value: 34.694
|
2439 |
+
- type: precision_at_5
|
2440 |
+
value: 30.203999999999997
|
2441 |
+
- type: recall_at_1
|
2442 |
+
value: 2.603
|
2443 |
+
- type: recall_at_10
|
2444 |
+
value: 18.716
|
2445 |
+
- type: recall_at_100
|
2446 |
+
value: 42.512
|
2447 |
+
- type: recall_at_1000
|
2448 |
+
value: 79.32000000000001
|
2449 |
+
- type: recall_at_3
|
2450 |
+
value: 7.59
|
2451 |
+
- type: recall_at_5
|
2452 |
+
value: 10.949
|
2453 |
+
- task:
|
2454 |
+
type: Classification
|
2455 |
+
dataset:
|
2456 |
+
type: mteb/toxic_conversations_50k
|
2457 |
+
name: MTEB ToxicConversationsClassification
|
2458 |
+
config: default
|
2459 |
+
split: test
|
2460 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2461 |
+
metrics:
|
2462 |
+
- type: accuracy
|
2463 |
+
value: 74.117
|
2464 |
+
- type: ap
|
2465 |
+
value: 15.89357321699319
|
2466 |
+
- type: f1
|
2467 |
+
value: 57.14385866369257
|
2468 |
+
- task:
|
2469 |
+
type: Classification
|
2470 |
+
dataset:
|
2471 |
+
type: mteb/tweet_sentiment_extraction
|
2472 |
+
name: MTEB TweetSentimentExtractionClassification
|
2473 |
+
config: default
|
2474 |
+
split: test
|
2475 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2476 |
+
metrics:
|
2477 |
+
- type: accuracy
|
2478 |
+
value: 61.38370118845502
|
2479 |
+
- type: f1
|
2480 |
+
value: 61.67038693866553
|
2481 |
+
- task:
|
2482 |
+
type: Clustering
|
2483 |
+
dataset:
|
2484 |
+
type: mteb/twentynewsgroups-clustering
|
2485 |
+
name: MTEB TwentyNewsgroupsClustering
|
2486 |
+
config: default
|
2487 |
+
split: test
|
2488 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2489 |
+
metrics:
|
2490 |
+
- type: v_measure
|
2491 |
+
value: 42.57754941537969
|
2492 |
+
- task:
|
2493 |
+
type: PairClassification
|
2494 |
+
dataset:
|
2495 |
+
type: mteb/twittersemeval2015-pairclassification
|
2496 |
+
name: MTEB TwitterSemEval2015
|
2497 |
+
config: default
|
2498 |
+
split: test
|
2499 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2500 |
+
metrics:
|
2501 |
+
- type: cos_sim_accuracy
|
2502 |
+
value: 86.1775049174465
|
2503 |
+
- type: cos_sim_ap
|
2504 |
+
value: 74.3994879581554
|
2505 |
+
- type: cos_sim_f1
|
2506 |
+
value: 69.32903671308551
|
2507 |
+
- type: cos_sim_precision
|
2508 |
+
value: 61.48193508879363
|
2509 |
+
- type: cos_sim_recall
|
2510 |
+
value: 79.47229551451187
|
2511 |
+
- type: dot_accuracy
|
2512 |
+
value: 81.65345413363534
|
2513 |
+
- type: dot_ap
|
2514 |
+
value: 59.690898346685096
|
2515 |
+
- type: dot_f1
|
2516 |
+
value: 57.27622826467499
|
2517 |
+
- type: dot_precision
|
2518 |
+
value: 51.34965473948525
|
2519 |
+
- type: dot_recall
|
2520 |
+
value: 64.74934036939314
|
2521 |
+
- type: euclidean_accuracy
|
2522 |
+
value: 86.04637301066937
|
2523 |
+
- type: euclidean_ap
|
2524 |
+
value: 74.33009001775268
|
2525 |
+
- type: euclidean_f1
|
2526 |
+
value: 69.2458374142997
|
2527 |
+
- type: euclidean_precision
|
2528 |
+
value: 64.59570580173595
|
2529 |
+
- type: euclidean_recall
|
2530 |
+
value: 74.6174142480211
|
2531 |
+
- type: manhattan_accuracy
|
2532 |
+
value: 86.11193896405793
|
2533 |
+
- type: manhattan_ap
|
2534 |
+
value: 74.2964140130421
|
2535 |
+
- type: manhattan_f1
|
2536 |
+
value: 69.11601528788066
|
2537 |
+
- type: manhattan_precision
|
2538 |
+
value: 64.86924323073363
|
2539 |
+
- type: manhattan_recall
|
2540 |
+
value: 73.95778364116094
|
2541 |
+
- type: max_accuracy
|
2542 |
+
value: 86.1775049174465
|
2543 |
+
- type: max_ap
|
2544 |
+
value: 74.3994879581554
|
2545 |
+
- type: max_f1
|
2546 |
+
value: 69.32903671308551
|
2547 |
+
- task:
|
2548 |
+
type: PairClassification
|
2549 |
+
dataset:
|
2550 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2551 |
+
name: MTEB TwitterURLCorpus
|
2552 |
+
config: default
|
2553 |
+
split: test
|
2554 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2555 |
+
metrics:
|
2556 |
+
- type: cos_sim_accuracy
|
2557 |
+
value: 89.01501921061823
|
2558 |
+
- type: cos_sim_ap
|
2559 |
+
value: 85.97819287477351
|
2560 |
+
- type: cos_sim_f1
|
2561 |
+
value: 78.33882858518875
|
2562 |
+
- type: cos_sim_precision
|
2563 |
+
value: 75.49446626204926
|
2564 |
+
- type: cos_sim_recall
|
2565 |
+
value: 81.40591315060055
|
2566 |
+
- type: dot_accuracy
|
2567 |
+
value: 86.47494857763806
|
2568 |
+
- type: dot_ap
|
2569 |
+
value: 78.77420360340282
|
2570 |
+
- type: dot_f1
|
2571 |
+
value: 73.06433247936238
|
2572 |
+
- type: dot_precision
|
2573 |
+
value: 67.92140777983595
|
2574 |
+
- type: dot_recall
|
2575 |
+
value: 79.04989220819218
|
2576 |
+
- type: euclidean_accuracy
|
2577 |
+
value: 88.7297706368611
|
2578 |
+
- type: euclidean_ap
|
2579 |
+
value: 85.61550568529317
|
2580 |
+
- type: euclidean_f1
|
2581 |
+
value: 77.84805525263539
|
2582 |
+
- type: euclidean_precision
|
2583 |
+
value: 73.73639994491117
|
2584 |
+
- type: euclidean_recall
|
2585 |
+
value: 82.44533415460425
|
2586 |
+
- type: manhattan_accuracy
|
2587 |
+
value: 88.75111576823068
|
2588 |
+
- type: manhattan_ap
|
2589 |
+
value: 85.58701671476263
|
2590 |
+
- type: manhattan_f1
|
2591 |
+
value: 77.70169909067856
|
2592 |
+
- type: manhattan_precision
|
2593 |
+
value: 73.37666780704755
|
2594 |
+
- type: manhattan_recall
|
2595 |
+
value: 82.5685247921158
|
2596 |
+
- type: max_accuracy
|
2597 |
+
value: 89.01501921061823
|
2598 |
+
- type: max_ap
|
2599 |
+
value: 85.97819287477351
|
2600 |
+
- type: max_f1
|
2601 |
+
value: 78.33882858518875
|
2602 |
+
language:
|
2603 |
+
- en
|
2604 |
license: mit
|
2605 |
---
|
2606 |
+
|
2607 |
+
## E5-base
|
2608 |
+
|
2609 |
+
**News (May 2023): please switch to [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2), which has better performance and same method of usage.**
|
2610 |
+
|
2611 |
+
[Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
|
2612 |
+
Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
|
2613 |
+
|
2614 |
+
This model has 12 layers and the embedding size is 768.
|
2615 |
+
|
2616 |
+
## Usage
|
2617 |
+
|
2618 |
+
Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
|
2619 |
+
|
2620 |
+
```python
|
2621 |
+
import torch.nn.functional as F
|
2622 |
+
|
2623 |
+
from torch import Tensor
|
2624 |
+
from transformers import AutoTokenizer, AutoModel
|
2625 |
+
|
2626 |
+
|
2627 |
+
def average_pool(last_hidden_states: Tensor,
|
2628 |
+
attention_mask: Tensor) -> Tensor:
|
2629 |
+
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
2630 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
2631 |
+
|
2632 |
+
|
2633 |
+
# Each input text should start with "query: " or "passage: ".
|
2634 |
+
# For tasks other than retrieval, you can simply use the "query: " prefix.
|
2635 |
+
input_texts = ['query: how much protein should a female eat',
|
2636 |
+
'query: summit define',
|
2637 |
+
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
|
2638 |
+
"passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."]
|
2639 |
+
|
2640 |
+
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-base')
|
2641 |
+
model = AutoModel.from_pretrained('intfloat/e5-base')
|
2642 |
+
|
2643 |
+
# Tokenize the input texts
|
2644 |
+
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
2645 |
+
|
2646 |
+
outputs = model(**batch_dict)
|
2647 |
+
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
2648 |
+
|
2649 |
+
# normalize embeddings
|
2650 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
2651 |
+
scores = (embeddings[:2] @ embeddings[2:].T) * 100
|
2652 |
+
print(scores.tolist())
|
2653 |
+
```
|
2654 |
+
|
2655 |
+
## Training Details
|
2656 |
+
|
2657 |
+
Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf).
|
2658 |
+
|
2659 |
+
## Benchmark Evaluation
|
2660 |
+
|
2661 |
+
Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results
|
2662 |
+
on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316).
|
2663 |
+
|
2664 |
+
## Support for Sentence Transformers
|
2665 |
+
|
2666 |
+
Below is an example for usage with sentence_transformers.
|
2667 |
+
```python
|
2668 |
+
from sentence_transformers import SentenceTransformer
|
2669 |
+
model = SentenceTransformer('intfloat/e5-base')
|
2670 |
+
input_texts = [
|
2671 |
+
'query: how much protein should a female eat',
|
2672 |
+
'query: summit define',
|
2673 |
+
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
|
2674 |
+
"passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
|
2675 |
+
]
|
2676 |
+
embeddings = model.encode(input_texts, normalize_embeddings=True)
|
2677 |
+
```
|
2678 |
+
|
2679 |
+
Package requirements
|
2680 |
+
|
2681 |
+
`pip install sentence_transformers~=2.2.2`
|
2682 |
+
|
2683 |
+
Contributors: [michaelfeil](https://huggingface.co/michaelfeil)
|
2684 |
+
|
2685 |
+
## FAQ
|
2686 |
+
|
2687 |
+
**1. Do I need to add the prefix "query: " and "passage: " to input texts?**
|
2688 |
+
|
2689 |
+
Yes, this is how the model is trained, otherwise you will see a performance degradation.
|
2690 |
+
|
2691 |
+
Here are some rules of thumb:
|
2692 |
+
- Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval.
|
2693 |
+
|
2694 |
+
- Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval.
|
2695 |
+
|
2696 |
+
- Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering.
|
2697 |
+
|
2698 |
+
**2. Why are my reproduced results slightly different from reported in the model card?**
|
2699 |
+
|
2700 |
+
Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences.
|
2701 |
+
|
2702 |
+
**3. Why does the cosine similarity scores distribute around 0.7 to 1.0?**
|
2703 |
+
|
2704 |
+
This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss.
|
2705 |
+
|
2706 |
+
For text embedding tasks like text retrieval or semantic similarity,
|
2707 |
+
what matters is the relative order of the scores instead of the absolute values,
|
2708 |
+
so this should not be an issue.
|
2709 |
+
|
2710 |
+
## Citation
|
2711 |
+
|
2712 |
+
If you find our paper or models helpful, please consider cite as follows:
|
2713 |
+
|
2714 |
+
```
|
2715 |
+
@article{wang2022text,
|
2716 |
+
title={Text Embeddings by Weakly-Supervised Contrastive Pre-training},
|
2717 |
+
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu},
|
2718 |
+
journal={arXiv preprint arXiv:2212.03533},
|
2719 |
+
year={2022}
|
2720 |
+
}
|
2721 |
+
```
|
2722 |
+
|
2723 |
+
## Limitations
|
2724 |
+
|
2725 |
+
This model only works for English texts. Long texts will be truncated to at most 512 tokens.
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "tmp/",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.15.0",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1661c4d3b0de6a7e37821bcbab5f066c3499346e05cae7918094b0cd8dd34a02
|
3 |
+
size 437955512
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
onnx/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0c66860595a23e369b583295e7a21ef18fd5a44ebe52a8fdbeb58e1e08be875
|
3 |
+
size 435811539
|
onnx/model_quantized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dac57e73b6097d8335432adaaac25b517ef363c39f6399b3b7167bbda37e5be
|
3 |
+
size 110083338
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd623a40c8b841b7c99a464e32e6629d19935a52d123d1ebda7b26606b5de637
|
3 |
+
size 438007537
|
quantize_config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"per_channel": true,
|
3 |
+
"reduce_range": true,
|
4 |
+
"per_model_config": {
|
5 |
+
"model": {
|
6 |
+
"op_types": [
|
7 |
+
"Gather",
|
8 |
+
"Pow",
|
9 |
+
"Concat",
|
10 |
+
"Softmax",
|
11 |
+
"Unsqueeze",
|
12 |
+
"Sub",
|
13 |
+
"Reshape",
|
14 |
+
"Mul",
|
15 |
+
"Erf",
|
16 |
+
"ReduceMean",
|
17 |
+
"Sqrt",
|
18 |
+
"Constant",
|
19 |
+
"Add",
|
20 |
+
"Shape",
|
21 |
+
"MatMul",
|
22 |
+
"Div",
|
23 |
+
"Transpose",
|
24 |
+
"Slice",
|
25 |
+
"Cast"
|
26 |
+
],
|
27 |
+
"weight_type": "QInt8"
|
28 |
+
}
|
29 |
+
}
|
30 |
+
}
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "amlt/1031_add_qd_prompt_ft_random_swap_nli/all_kd_ft", "tokenizer_class": "BertTokenizer"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|