nanmoon commited on
Commit
adcab1d
1 Parent(s): 041e737

e5-large-v2

Browse files
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,3 +1,2723 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - mteb
4
+ - Sentence Transformers
5
+ - sentence-similarity
6
+ - sentence-transformers
7
+ model-index:
8
+ - name: e5-large-v2
9
+ results:
10
+ - task:
11
+ type: Classification
12
+ dataset:
13
+ type: mteb/amazon_counterfactual
14
+ name: MTEB AmazonCounterfactualClassification (en)
15
+ config: en
16
+ split: test
17
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
18
+ metrics:
19
+ - type: accuracy
20
+ value: 79.22388059701493
21
+ - type: ap
22
+ value: 43.20816505595132
23
+ - type: f1
24
+ value: 73.27811303522058
25
+ - task:
26
+ type: Classification
27
+ dataset:
28
+ type: mteb/amazon_polarity
29
+ name: MTEB AmazonPolarityClassification
30
+ config: default
31
+ split: test
32
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
33
+ metrics:
34
+ - type: accuracy
35
+ value: 93.748325
36
+ - type: ap
37
+ value: 90.72534979701297
38
+ - type: f1
39
+ value: 93.73895874282185
40
+ - task:
41
+ type: Classification
42
+ dataset:
43
+ type: mteb/amazon_reviews_multi
44
+ name: MTEB AmazonReviewsClassification (en)
45
+ config: en
46
+ split: test
47
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
48
+ metrics:
49
+ - type: accuracy
50
+ value: 48.612
51
+ - type: f1
52
+ value: 47.61157345898393
53
+ - task:
54
+ type: Retrieval
55
+ dataset:
56
+ type: arguana
57
+ name: MTEB ArguAna
58
+ config: default
59
+ split: test
60
+ revision: None
61
+ metrics:
62
+ - type: map_at_1
63
+ value: 23.541999999999998
64
+ - type: map_at_10
65
+ value: 38.208
66
+ - type: map_at_100
67
+ value: 39.417
68
+ - type: map_at_1000
69
+ value: 39.428999999999995
70
+ - type: map_at_3
71
+ value: 33.95
72
+ - type: map_at_5
73
+ value: 36.329
74
+ - type: mrr_at_1
75
+ value: 23.755000000000003
76
+ - type: mrr_at_10
77
+ value: 38.288
78
+ - type: mrr_at_100
79
+ value: 39.511
80
+ - type: mrr_at_1000
81
+ value: 39.523
82
+ - type: mrr_at_3
83
+ value: 34.009
84
+ - type: mrr_at_5
85
+ value: 36.434
86
+ - type: ndcg_at_1
87
+ value: 23.541999999999998
88
+ - type: ndcg_at_10
89
+ value: 46.417
90
+ - type: ndcg_at_100
91
+ value: 51.812000000000005
92
+ - type: ndcg_at_1000
93
+ value: 52.137
94
+ - type: ndcg_at_3
95
+ value: 37.528
96
+ - type: ndcg_at_5
97
+ value: 41.81
98
+ - type: precision_at_1
99
+ value: 23.541999999999998
100
+ - type: precision_at_10
101
+ value: 7.269
102
+ - type: precision_at_100
103
+ value: 0.9690000000000001
104
+ - type: precision_at_1000
105
+ value: 0.099
106
+ - type: precision_at_3
107
+ value: 15.979
108
+ - type: precision_at_5
109
+ value: 11.664
110
+ - type: recall_at_1
111
+ value: 23.541999999999998
112
+ - type: recall_at_10
113
+ value: 72.688
114
+ - type: recall_at_100
115
+ value: 96.871
116
+ - type: recall_at_1000
117
+ value: 99.431
118
+ - type: recall_at_3
119
+ value: 47.937000000000005
120
+ - type: recall_at_5
121
+ value: 58.321
122
+ - task:
123
+ type: Clustering
124
+ dataset:
125
+ type: mteb/arxiv-clustering-p2p
126
+ name: MTEB ArxivClusteringP2P
127
+ config: default
128
+ split: test
129
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
130
+ metrics:
131
+ - type: v_measure
132
+ value: 45.546499570522094
133
+ - task:
134
+ type: Clustering
135
+ dataset:
136
+ type: mteb/arxiv-clustering-s2s
137
+ name: MTEB ArxivClusteringS2S
138
+ config: default
139
+ split: test
140
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
141
+ metrics:
142
+ - type: v_measure
143
+ value: 41.01607489943561
144
+ - task:
145
+ type: Reranking
146
+ dataset:
147
+ type: mteb/askubuntudupquestions-reranking
148
+ name: MTEB AskUbuntuDupQuestions
149
+ config: default
150
+ split: test
151
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
152
+ metrics:
153
+ - type: map
154
+ value: 59.616107510107774
155
+ - type: mrr
156
+ value: 72.75106626214661
157
+ - task:
158
+ type: STS
159
+ dataset:
160
+ type: mteb/biosses-sts
161
+ name: MTEB BIOSSES
162
+ config: default
163
+ split: test
164
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
165
+ metrics:
166
+ - type: cos_sim_pearson
167
+ value: 84.33018094733868
168
+ - type: cos_sim_spearman
169
+ value: 83.60190492611737
170
+ - type: euclidean_pearson
171
+ value: 82.1492450218961
172
+ - type: euclidean_spearman
173
+ value: 82.70308926526991
174
+ - type: manhattan_pearson
175
+ value: 81.93959600076842
176
+ - type: manhattan_spearman
177
+ value: 82.73260801016369
178
+ - task:
179
+ type: Classification
180
+ dataset:
181
+ type: mteb/banking77
182
+ name: MTEB Banking77Classification
183
+ config: default
184
+ split: test
185
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
186
+ metrics:
187
+ - type: accuracy
188
+ value: 84.54545454545455
189
+ - type: f1
190
+ value: 84.49582530928923
191
+ - task:
192
+ type: Clustering
193
+ dataset:
194
+ type: mteb/biorxiv-clustering-p2p
195
+ name: MTEB BiorxivClusteringP2P
196
+ config: default
197
+ split: test
198
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
199
+ metrics:
200
+ - type: v_measure
201
+ value: 37.362725540120096
202
+ - task:
203
+ type: Clustering
204
+ dataset:
205
+ type: mteb/biorxiv-clustering-s2s
206
+ name: MTEB BiorxivClusteringS2S
207
+ config: default
208
+ split: test
209
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
210
+ metrics:
211
+ - type: v_measure
212
+ value: 34.849509608178145
213
+ - task:
214
+ type: Retrieval
215
+ dataset:
216
+ type: BeIR/cqadupstack
217
+ name: MTEB CQADupstackAndroidRetrieval
218
+ config: default
219
+ split: test
220
+ revision: None
221
+ metrics:
222
+ - type: map_at_1
223
+ value: 31.502999999999997
224
+ - type: map_at_10
225
+ value: 43.323
226
+ - type: map_at_100
227
+ value: 44.708999999999996
228
+ - type: map_at_1000
229
+ value: 44.838
230
+ - type: map_at_3
231
+ value: 38.987
232
+ - type: map_at_5
233
+ value: 41.516999999999996
234
+ - type: mrr_at_1
235
+ value: 38.769999999999996
236
+ - type: mrr_at_10
237
+ value: 49.13
238
+ - type: mrr_at_100
239
+ value: 49.697
240
+ - type: mrr_at_1000
241
+ value: 49.741
242
+ - type: mrr_at_3
243
+ value: 45.804
244
+ - type: mrr_at_5
245
+ value: 47.842
246
+ - type: ndcg_at_1
247
+ value: 38.769999999999996
248
+ - type: ndcg_at_10
249
+ value: 50.266999999999996
250
+ - type: ndcg_at_100
251
+ value: 54.967
252
+ - type: ndcg_at_1000
253
+ value: 56.976000000000006
254
+ - type: ndcg_at_3
255
+ value: 43.823
256
+ - type: ndcg_at_5
257
+ value: 47.12
258
+ - type: precision_at_1
259
+ value: 38.769999999999996
260
+ - type: precision_at_10
261
+ value: 10.057
262
+ - type: precision_at_100
263
+ value: 1.554
264
+ - type: precision_at_1000
265
+ value: 0.202
266
+ - type: precision_at_3
267
+ value: 21.125
268
+ - type: precision_at_5
269
+ value: 15.851
270
+ - type: recall_at_1
271
+ value: 31.502999999999997
272
+ - type: recall_at_10
273
+ value: 63.715999999999994
274
+ - type: recall_at_100
275
+ value: 83.61800000000001
276
+ - type: recall_at_1000
277
+ value: 96.63199999999999
278
+ - type: recall_at_3
279
+ value: 45.403
280
+ - type: recall_at_5
281
+ value: 54.481
282
+ - task:
283
+ type: Retrieval
284
+ dataset:
285
+ type: BeIR/cqadupstack
286
+ name: MTEB CQADupstackEnglishRetrieval
287
+ config: default
288
+ split: test
289
+ revision: None
290
+ metrics:
291
+ - type: map_at_1
292
+ value: 27.833000000000002
293
+ - type: map_at_10
294
+ value: 37.330999999999996
295
+ - type: map_at_100
296
+ value: 38.580999999999996
297
+ - type: map_at_1000
298
+ value: 38.708
299
+ - type: map_at_3
300
+ value: 34.713
301
+ - type: map_at_5
302
+ value: 36.104
303
+ - type: mrr_at_1
304
+ value: 35.223
305
+ - type: mrr_at_10
306
+ value: 43.419000000000004
307
+ - type: mrr_at_100
308
+ value: 44.198
309
+ - type: mrr_at_1000
310
+ value: 44.249
311
+ - type: mrr_at_3
312
+ value: 41.614000000000004
313
+ - type: mrr_at_5
314
+ value: 42.553000000000004
315
+ - type: ndcg_at_1
316
+ value: 35.223
317
+ - type: ndcg_at_10
318
+ value: 42.687999999999995
319
+ - type: ndcg_at_100
320
+ value: 47.447
321
+ - type: ndcg_at_1000
322
+ value: 49.701
323
+ - type: ndcg_at_3
324
+ value: 39.162
325
+ - type: ndcg_at_5
326
+ value: 40.557
327
+ - type: precision_at_1
328
+ value: 35.223
329
+ - type: precision_at_10
330
+ value: 7.962
331
+ - type: precision_at_100
332
+ value: 1.304
333
+ - type: precision_at_1000
334
+ value: 0.18
335
+ - type: precision_at_3
336
+ value: 19.023
337
+ - type: precision_at_5
338
+ value: 13.184999999999999
339
+ - type: recall_at_1
340
+ value: 27.833000000000002
341
+ - type: recall_at_10
342
+ value: 51.881
343
+ - type: recall_at_100
344
+ value: 72.04
345
+ - type: recall_at_1000
346
+ value: 86.644
347
+ - type: recall_at_3
348
+ value: 40.778
349
+ - type: recall_at_5
350
+ value: 45.176
351
+ - task:
352
+ type: Retrieval
353
+ dataset:
354
+ type: BeIR/cqadupstack
355
+ name: MTEB CQADupstackGamingRetrieval
356
+ config: default
357
+ split: test
358
+ revision: None
359
+ metrics:
360
+ - type: map_at_1
361
+ value: 38.175
362
+ - type: map_at_10
363
+ value: 51.174
364
+ - type: map_at_100
365
+ value: 52.26499999999999
366
+ - type: map_at_1000
367
+ value: 52.315999999999995
368
+ - type: map_at_3
369
+ value: 47.897
370
+ - type: map_at_5
371
+ value: 49.703
372
+ - type: mrr_at_1
373
+ value: 43.448
374
+ - type: mrr_at_10
375
+ value: 54.505
376
+ - type: mrr_at_100
377
+ value: 55.216
378
+ - type: mrr_at_1000
379
+ value: 55.242000000000004
380
+ - type: mrr_at_3
381
+ value: 51.98500000000001
382
+ - type: mrr_at_5
383
+ value: 53.434000000000005
384
+ - type: ndcg_at_1
385
+ value: 43.448
386
+ - type: ndcg_at_10
387
+ value: 57.282
388
+ - type: ndcg_at_100
389
+ value: 61.537
390
+ - type: ndcg_at_1000
391
+ value: 62.546
392
+ - type: ndcg_at_3
393
+ value: 51.73799999999999
394
+ - type: ndcg_at_5
395
+ value: 54.324
396
+ - type: precision_at_1
397
+ value: 43.448
398
+ - type: precision_at_10
399
+ value: 9.292
400
+ - type: precision_at_100
401
+ value: 1.233
402
+ - type: precision_at_1000
403
+ value: 0.136
404
+ - type: precision_at_3
405
+ value: 23.218
406
+ - type: precision_at_5
407
+ value: 15.887
408
+ - type: recall_at_1
409
+ value: 38.175
410
+ - type: recall_at_10
411
+ value: 72.00999999999999
412
+ - type: recall_at_100
413
+ value: 90.155
414
+ - type: recall_at_1000
415
+ value: 97.257
416
+ - type: recall_at_3
417
+ value: 57.133
418
+ - type: recall_at_5
419
+ value: 63.424
420
+ - task:
421
+ type: Retrieval
422
+ dataset:
423
+ type: BeIR/cqadupstack
424
+ name: MTEB CQADupstackGisRetrieval
425
+ config: default
426
+ split: test
427
+ revision: None
428
+ metrics:
429
+ - type: map_at_1
430
+ value: 22.405
431
+ - type: map_at_10
432
+ value: 30.043
433
+ - type: map_at_100
434
+ value: 31.191000000000003
435
+ - type: map_at_1000
436
+ value: 31.275
437
+ - type: map_at_3
438
+ value: 27.034000000000002
439
+ - type: map_at_5
440
+ value: 28.688000000000002
441
+ - type: mrr_at_1
442
+ value: 24.068
443
+ - type: mrr_at_10
444
+ value: 31.993
445
+ - type: mrr_at_100
446
+ value: 32.992
447
+ - type: mrr_at_1000
448
+ value: 33.050000000000004
449
+ - type: mrr_at_3
450
+ value: 28.964000000000002
451
+ - type: mrr_at_5
452
+ value: 30.653000000000002
453
+ - type: ndcg_at_1
454
+ value: 24.068
455
+ - type: ndcg_at_10
456
+ value: 35.198
457
+ - type: ndcg_at_100
458
+ value: 40.709
459
+ - type: ndcg_at_1000
460
+ value: 42.855
461
+ - type: ndcg_at_3
462
+ value: 29.139
463
+ - type: ndcg_at_5
464
+ value: 32.045
465
+ - type: precision_at_1
466
+ value: 24.068
467
+ - type: precision_at_10
468
+ value: 5.65
469
+ - type: precision_at_100
470
+ value: 0.885
471
+ - type: precision_at_1000
472
+ value: 0.11199999999999999
473
+ - type: precision_at_3
474
+ value: 12.279
475
+ - type: precision_at_5
476
+ value: 8.994
477
+ - type: recall_at_1
478
+ value: 22.405
479
+ - type: recall_at_10
480
+ value: 49.391
481
+ - type: recall_at_100
482
+ value: 74.53699999999999
483
+ - type: recall_at_1000
484
+ value: 90.605
485
+ - type: recall_at_3
486
+ value: 33.126
487
+ - type: recall_at_5
488
+ value: 40.073
489
+ - task:
490
+ type: Retrieval
491
+ dataset:
492
+ type: BeIR/cqadupstack
493
+ name: MTEB CQADupstackMathematicaRetrieval
494
+ config: default
495
+ split: test
496
+ revision: None
497
+ metrics:
498
+ - type: map_at_1
499
+ value: 13.309999999999999
500
+ - type: map_at_10
501
+ value: 20.688000000000002
502
+ - type: map_at_100
503
+ value: 22.022
504
+ - type: map_at_1000
505
+ value: 22.152
506
+ - type: map_at_3
507
+ value: 17.954
508
+ - type: map_at_5
509
+ value: 19.439
510
+ - type: mrr_at_1
511
+ value: 16.294
512
+ - type: mrr_at_10
513
+ value: 24.479
514
+ - type: mrr_at_100
515
+ value: 25.515
516
+ - type: mrr_at_1000
517
+ value: 25.593
518
+ - type: mrr_at_3
519
+ value: 21.642
520
+ - type: mrr_at_5
521
+ value: 23.189999999999998
522
+ - type: ndcg_at_1
523
+ value: 16.294
524
+ - type: ndcg_at_10
525
+ value: 25.833000000000002
526
+ - type: ndcg_at_100
527
+ value: 32.074999999999996
528
+ - type: ndcg_at_1000
529
+ value: 35.083
530
+ - type: ndcg_at_3
531
+ value: 20.493
532
+ - type: ndcg_at_5
533
+ value: 22.949
534
+ - type: precision_at_1
535
+ value: 16.294
536
+ - type: precision_at_10
537
+ value: 5.112
538
+ - type: precision_at_100
539
+ value: 0.96
540
+ - type: precision_at_1000
541
+ value: 0.134
542
+ - type: precision_at_3
543
+ value: 9.908999999999999
544
+ - type: precision_at_5
545
+ value: 7.587000000000001
546
+ - type: recall_at_1
547
+ value: 13.309999999999999
548
+ - type: recall_at_10
549
+ value: 37.851
550
+ - type: recall_at_100
551
+ value: 64.835
552
+ - type: recall_at_1000
553
+ value: 86.334
554
+ - type: recall_at_3
555
+ value: 23.493
556
+ - type: recall_at_5
557
+ value: 29.528
558
+ - task:
559
+ type: Retrieval
560
+ dataset:
561
+ type: BeIR/cqadupstack
562
+ name: MTEB CQADupstackPhysicsRetrieval
563
+ config: default
564
+ split: test
565
+ revision: None
566
+ metrics:
567
+ - type: map_at_1
568
+ value: 25.857999999999997
569
+ - type: map_at_10
570
+ value: 35.503
571
+ - type: map_at_100
572
+ value: 36.957
573
+ - type: map_at_1000
574
+ value: 37.065
575
+ - type: map_at_3
576
+ value: 32.275999999999996
577
+ - type: map_at_5
578
+ value: 34.119
579
+ - type: mrr_at_1
580
+ value: 31.954
581
+ - type: mrr_at_10
582
+ value: 40.851
583
+ - type: mrr_at_100
584
+ value: 41.863
585
+ - type: mrr_at_1000
586
+ value: 41.900999999999996
587
+ - type: mrr_at_3
588
+ value: 38.129999999999995
589
+ - type: mrr_at_5
590
+ value: 39.737
591
+ - type: ndcg_at_1
592
+ value: 31.954
593
+ - type: ndcg_at_10
594
+ value: 41.343999999999994
595
+ - type: ndcg_at_100
596
+ value: 47.397
597
+ - type: ndcg_at_1000
598
+ value: 49.501
599
+ - type: ndcg_at_3
600
+ value: 36.047000000000004
601
+ - type: ndcg_at_5
602
+ value: 38.639
603
+ - type: precision_at_1
604
+ value: 31.954
605
+ - type: precision_at_10
606
+ value: 7.68
607
+ - type: precision_at_100
608
+ value: 1.247
609
+ - type: precision_at_1000
610
+ value: 0.16199999999999998
611
+ - type: precision_at_3
612
+ value: 17.132
613
+ - type: precision_at_5
614
+ value: 12.589
615
+ - type: recall_at_1
616
+ value: 25.857999999999997
617
+ - type: recall_at_10
618
+ value: 53.43599999999999
619
+ - type: recall_at_100
620
+ value: 78.82400000000001
621
+ - type: recall_at_1000
622
+ value: 92.78999999999999
623
+ - type: recall_at_3
624
+ value: 38.655
625
+ - type: recall_at_5
626
+ value: 45.216
627
+ - task:
628
+ type: Retrieval
629
+ dataset:
630
+ type: BeIR/cqadupstack
631
+ name: MTEB CQADupstackProgrammersRetrieval
632
+ config: default
633
+ split: test
634
+ revision: None
635
+ metrics:
636
+ - type: map_at_1
637
+ value: 24.709
638
+ - type: map_at_10
639
+ value: 34.318
640
+ - type: map_at_100
641
+ value: 35.657
642
+ - type: map_at_1000
643
+ value: 35.783
644
+ - type: map_at_3
645
+ value: 31.326999999999998
646
+ - type: map_at_5
647
+ value: 33.021
648
+ - type: mrr_at_1
649
+ value: 30.137000000000004
650
+ - type: mrr_at_10
651
+ value: 39.093
652
+ - type: mrr_at_100
653
+ value: 39.992
654
+ - type: mrr_at_1000
655
+ value: 40.056999999999995
656
+ - type: mrr_at_3
657
+ value: 36.606
658
+ - type: mrr_at_5
659
+ value: 37.861
660
+ - type: ndcg_at_1
661
+ value: 30.137000000000004
662
+ - type: ndcg_at_10
663
+ value: 39.974
664
+ - type: ndcg_at_100
665
+ value: 45.647999999999996
666
+ - type: ndcg_at_1000
667
+ value: 48.259
668
+ - type: ndcg_at_3
669
+ value: 35.028
670
+ - type: ndcg_at_5
671
+ value: 37.175999999999995
672
+ - type: precision_at_1
673
+ value: 30.137000000000004
674
+ - type: precision_at_10
675
+ value: 7.363
676
+ - type: precision_at_100
677
+ value: 1.184
678
+ - type: precision_at_1000
679
+ value: 0.161
680
+ - type: precision_at_3
681
+ value: 16.857
682
+ - type: precision_at_5
683
+ value: 11.963
684
+ - type: recall_at_1
685
+ value: 24.709
686
+ - type: recall_at_10
687
+ value: 52.087
688
+ - type: recall_at_100
689
+ value: 76.125
690
+ - type: recall_at_1000
691
+ value: 93.82300000000001
692
+ - type: recall_at_3
693
+ value: 38.149
694
+ - type: recall_at_5
695
+ value: 43.984
696
+ - task:
697
+ type: Retrieval
698
+ dataset:
699
+ type: BeIR/cqadupstack
700
+ name: MTEB CQADupstackRetrieval
701
+ config: default
702
+ split: test
703
+ revision: None
704
+ metrics:
705
+ - type: map_at_1
706
+ value: 23.40791666666667
707
+ - type: map_at_10
708
+ value: 32.458083333333335
709
+ - type: map_at_100
710
+ value: 33.691916666666664
711
+ - type: map_at_1000
712
+ value: 33.81191666666666
713
+ - type: map_at_3
714
+ value: 29.51625
715
+ - type: map_at_5
716
+ value: 31.168083333333335
717
+ - type: mrr_at_1
718
+ value: 27.96591666666666
719
+ - type: mrr_at_10
720
+ value: 36.528583333333344
721
+ - type: mrr_at_100
722
+ value: 37.404
723
+ - type: mrr_at_1000
724
+ value: 37.464333333333336
725
+ - type: mrr_at_3
726
+ value: 33.92883333333333
727
+ - type: mrr_at_5
728
+ value: 35.41933333333333
729
+ - type: ndcg_at_1
730
+ value: 27.96591666666666
731
+ - type: ndcg_at_10
732
+ value: 37.89141666666666
733
+ - type: ndcg_at_100
734
+ value: 43.23066666666666
735
+ - type: ndcg_at_1000
736
+ value: 45.63258333333333
737
+ - type: ndcg_at_3
738
+ value: 32.811249999999994
739
+ - type: ndcg_at_5
740
+ value: 35.22566666666667
741
+ - type: precision_at_1
742
+ value: 27.96591666666666
743
+ - type: precision_at_10
744
+ value: 6.834083333333332
745
+ - type: precision_at_100
746
+ value: 1.12225
747
+ - type: precision_at_1000
748
+ value: 0.15241666666666667
749
+ - type: precision_at_3
750
+ value: 15.264333333333335
751
+ - type: precision_at_5
752
+ value: 11.039416666666666
753
+ - type: recall_at_1
754
+ value: 23.40791666666667
755
+ - type: recall_at_10
756
+ value: 49.927083333333336
757
+ - type: recall_at_100
758
+ value: 73.44641666666668
759
+ - type: recall_at_1000
760
+ value: 90.19950000000001
761
+ - type: recall_at_3
762
+ value: 35.88341666666667
763
+ - type: recall_at_5
764
+ value: 42.061249999999994
765
+ - task:
766
+ type: Retrieval
767
+ dataset:
768
+ type: BeIR/cqadupstack
769
+ name: MTEB CQADupstackStatsRetrieval
770
+ config: default
771
+ split: test
772
+ revision: None
773
+ metrics:
774
+ - type: map_at_1
775
+ value: 19.592000000000002
776
+ - type: map_at_10
777
+ value: 26.895999999999997
778
+ - type: map_at_100
779
+ value: 27.921000000000003
780
+ - type: map_at_1000
781
+ value: 28.02
782
+ - type: map_at_3
783
+ value: 24.883
784
+ - type: map_at_5
785
+ value: 25.812
786
+ - type: mrr_at_1
787
+ value: 22.698999999999998
788
+ - type: mrr_at_10
789
+ value: 29.520999999999997
790
+ - type: mrr_at_100
791
+ value: 30.458000000000002
792
+ - type: mrr_at_1000
793
+ value: 30.526999999999997
794
+ - type: mrr_at_3
795
+ value: 27.633000000000003
796
+ - type: mrr_at_5
797
+ value: 28.483999999999998
798
+ - type: ndcg_at_1
799
+ value: 22.698999999999998
800
+ - type: ndcg_at_10
801
+ value: 31.061
802
+ - type: ndcg_at_100
803
+ value: 36.398
804
+ - type: ndcg_at_1000
805
+ value: 38.89
806
+ - type: ndcg_at_3
807
+ value: 27.149
808
+ - type: ndcg_at_5
809
+ value: 28.627000000000002
810
+ - type: precision_at_1
811
+ value: 22.698999999999998
812
+ - type: precision_at_10
813
+ value: 5.106999999999999
814
+ - type: precision_at_100
815
+ value: 0.857
816
+ - type: precision_at_1000
817
+ value: 0.11499999999999999
818
+ - type: precision_at_3
819
+ value: 11.963
820
+ - type: precision_at_5
821
+ value: 8.221
822
+ - type: recall_at_1
823
+ value: 19.592000000000002
824
+ - type: recall_at_10
825
+ value: 41.329
826
+ - type: recall_at_100
827
+ value: 66.094
828
+ - type: recall_at_1000
829
+ value: 84.511
830
+ - type: recall_at_3
831
+ value: 30.61
832
+ - type: recall_at_5
833
+ value: 34.213
834
+ - task:
835
+ type: Retrieval
836
+ dataset:
837
+ type: BeIR/cqadupstack
838
+ name: MTEB CQADupstackTexRetrieval
839
+ config: default
840
+ split: test
841
+ revision: None
842
+ metrics:
843
+ - type: map_at_1
844
+ value: 14.71
845
+ - type: map_at_10
846
+ value: 20.965
847
+ - type: map_at_100
848
+ value: 21.994
849
+ - type: map_at_1000
850
+ value: 22.133
851
+ - type: map_at_3
852
+ value: 18.741
853
+ - type: map_at_5
854
+ value: 19.951
855
+ - type: mrr_at_1
856
+ value: 18.307000000000002
857
+ - type: mrr_at_10
858
+ value: 24.66
859
+ - type: mrr_at_100
860
+ value: 25.540000000000003
861
+ - type: mrr_at_1000
862
+ value: 25.629
863
+ - type: mrr_at_3
864
+ value: 22.511
865
+ - type: mrr_at_5
866
+ value: 23.72
867
+ - type: ndcg_at_1
868
+ value: 18.307000000000002
869
+ - type: ndcg_at_10
870
+ value: 25.153
871
+ - type: ndcg_at_100
872
+ value: 30.229
873
+ - type: ndcg_at_1000
874
+ value: 33.623
875
+ - type: ndcg_at_3
876
+ value: 21.203
877
+ - type: ndcg_at_5
878
+ value: 23.006999999999998
879
+ - type: precision_at_1
880
+ value: 18.307000000000002
881
+ - type: precision_at_10
882
+ value: 4.725
883
+ - type: precision_at_100
884
+ value: 0.8659999999999999
885
+ - type: precision_at_1000
886
+ value: 0.133
887
+ - type: precision_at_3
888
+ value: 10.14
889
+ - type: precision_at_5
890
+ value: 7.481
891
+ - type: recall_at_1
892
+ value: 14.71
893
+ - type: recall_at_10
894
+ value: 34.087
895
+ - type: recall_at_100
896
+ value: 57.147999999999996
897
+ - type: recall_at_1000
898
+ value: 81.777
899
+ - type: recall_at_3
900
+ value: 22.996
901
+ - type: recall_at_5
902
+ value: 27.73
903
+ - task:
904
+ type: Retrieval
905
+ dataset:
906
+ type: BeIR/cqadupstack
907
+ name: MTEB CQADupstackUnixRetrieval
908
+ config: default
909
+ split: test
910
+ revision: None
911
+ metrics:
912
+ - type: map_at_1
913
+ value: 23.472
914
+ - type: map_at_10
915
+ value: 32.699
916
+ - type: map_at_100
917
+ value: 33.867000000000004
918
+ - type: map_at_1000
919
+ value: 33.967000000000006
920
+ - type: map_at_3
921
+ value: 29.718
922
+ - type: map_at_5
923
+ value: 31.345
924
+ - type: mrr_at_1
925
+ value: 28.265
926
+ - type: mrr_at_10
927
+ value: 36.945
928
+ - type: mrr_at_100
929
+ value: 37.794
930
+ - type: mrr_at_1000
931
+ value: 37.857
932
+ - type: mrr_at_3
933
+ value: 34.266000000000005
934
+ - type: mrr_at_5
935
+ value: 35.768
936
+ - type: ndcg_at_1
937
+ value: 28.265
938
+ - type: ndcg_at_10
939
+ value: 38.35
940
+ - type: ndcg_at_100
941
+ value: 43.739
942
+ - type: ndcg_at_1000
943
+ value: 46.087
944
+ - type: ndcg_at_3
945
+ value: 33.004
946
+ - type: ndcg_at_5
947
+ value: 35.411
948
+ - type: precision_at_1
949
+ value: 28.265
950
+ - type: precision_at_10
951
+ value: 6.715999999999999
952
+ - type: precision_at_100
953
+ value: 1.059
954
+ - type: precision_at_1000
955
+ value: 0.13799999999999998
956
+ - type: precision_at_3
957
+ value: 15.299
958
+ - type: precision_at_5
959
+ value: 10.951
960
+ - type: recall_at_1
961
+ value: 23.472
962
+ - type: recall_at_10
963
+ value: 51.413
964
+ - type: recall_at_100
965
+ value: 75.17
966
+ - type: recall_at_1000
967
+ value: 91.577
968
+ - type: recall_at_3
969
+ value: 36.651
970
+ - type: recall_at_5
971
+ value: 42.814
972
+ - task:
973
+ type: Retrieval
974
+ dataset:
975
+ type: BeIR/cqadupstack
976
+ name: MTEB CQADupstackWebmastersRetrieval
977
+ config: default
978
+ split: test
979
+ revision: None
980
+ metrics:
981
+ - type: map_at_1
982
+ value: 23.666
983
+ - type: map_at_10
984
+ value: 32.963
985
+ - type: map_at_100
986
+ value: 34.544999999999995
987
+ - type: map_at_1000
988
+ value: 34.792
989
+ - type: map_at_3
990
+ value: 29.74
991
+ - type: map_at_5
992
+ value: 31.5
993
+ - type: mrr_at_1
994
+ value: 29.051
995
+ - type: mrr_at_10
996
+ value: 38.013000000000005
997
+ - type: mrr_at_100
998
+ value: 38.997
999
+ - type: mrr_at_1000
1000
+ value: 39.055
1001
+ - type: mrr_at_3
1002
+ value: 34.947
1003
+ - type: mrr_at_5
1004
+ value: 36.815
1005
+ - type: ndcg_at_1
1006
+ value: 29.051
1007
+ - type: ndcg_at_10
1008
+ value: 39.361000000000004
1009
+ - type: ndcg_at_100
1010
+ value: 45.186
1011
+ - type: ndcg_at_1000
1012
+ value: 47.867
1013
+ - type: ndcg_at_3
1014
+ value: 33.797
1015
+ - type: ndcg_at_5
1016
+ value: 36.456
1017
+ - type: precision_at_1
1018
+ value: 29.051
1019
+ - type: precision_at_10
1020
+ value: 7.668
1021
+ - type: precision_at_100
1022
+ value: 1.532
1023
+ - type: precision_at_1000
1024
+ value: 0.247
1025
+ - type: precision_at_3
1026
+ value: 15.876000000000001
1027
+ - type: precision_at_5
1028
+ value: 11.779
1029
+ - type: recall_at_1
1030
+ value: 23.666
1031
+ - type: recall_at_10
1032
+ value: 51.858000000000004
1033
+ - type: recall_at_100
1034
+ value: 77.805
1035
+ - type: recall_at_1000
1036
+ value: 94.504
1037
+ - type: recall_at_3
1038
+ value: 36.207
1039
+ - type: recall_at_5
1040
+ value: 43.094
1041
+ - task:
1042
+ type: Retrieval
1043
+ dataset:
1044
+ type: BeIR/cqadupstack
1045
+ name: MTEB CQADupstackWordpressRetrieval
1046
+ config: default
1047
+ split: test
1048
+ revision: None
1049
+ metrics:
1050
+ - type: map_at_1
1051
+ value: 15.662
1052
+ - type: map_at_10
1053
+ value: 23.594
1054
+ - type: map_at_100
1055
+ value: 24.593999999999998
1056
+ - type: map_at_1000
1057
+ value: 24.694
1058
+ - type: map_at_3
1059
+ value: 20.925
1060
+ - type: map_at_5
1061
+ value: 22.817999999999998
1062
+ - type: mrr_at_1
1063
+ value: 17.375
1064
+ - type: mrr_at_10
1065
+ value: 25.734
1066
+ - type: mrr_at_100
1067
+ value: 26.586
1068
+ - type: mrr_at_1000
1069
+ value: 26.671
1070
+ - type: mrr_at_3
1071
+ value: 23.044
1072
+ - type: mrr_at_5
1073
+ value: 24.975
1074
+ - type: ndcg_at_1
1075
+ value: 17.375
1076
+ - type: ndcg_at_10
1077
+ value: 28.186
1078
+ - type: ndcg_at_100
1079
+ value: 33.436
1080
+ - type: ndcg_at_1000
1081
+ value: 36.203
1082
+ - type: ndcg_at_3
1083
+ value: 23.152
1084
+ - type: ndcg_at_5
1085
+ value: 26.397
1086
+ - type: precision_at_1
1087
+ value: 17.375
1088
+ - type: precision_at_10
1089
+ value: 4.677
1090
+ - type: precision_at_100
1091
+ value: 0.786
1092
+ - type: precision_at_1000
1093
+ value: 0.109
1094
+ - type: precision_at_3
1095
+ value: 10.351
1096
+ - type: precision_at_5
1097
+ value: 7.985
1098
+ - type: recall_at_1
1099
+ value: 15.662
1100
+ - type: recall_at_10
1101
+ value: 40.066
1102
+ - type: recall_at_100
1103
+ value: 65.006
1104
+ - type: recall_at_1000
1105
+ value: 85.94000000000001
1106
+ - type: recall_at_3
1107
+ value: 27.400000000000002
1108
+ - type: recall_at_5
1109
+ value: 35.002
1110
+ - task:
1111
+ type: Retrieval
1112
+ dataset:
1113
+ type: climate-fever
1114
+ name: MTEB ClimateFEVER
1115
+ config: default
1116
+ split: test
1117
+ revision: None
1118
+ metrics:
1119
+ - type: map_at_1
1120
+ value: 8.853
1121
+ - type: map_at_10
1122
+ value: 15.568000000000001
1123
+ - type: map_at_100
1124
+ value: 17.383000000000003
1125
+ - type: map_at_1000
1126
+ value: 17.584
1127
+ - type: map_at_3
1128
+ value: 12.561
1129
+ - type: map_at_5
1130
+ value: 14.056
1131
+ - type: mrr_at_1
1132
+ value: 18.958
1133
+ - type: mrr_at_10
1134
+ value: 28.288000000000004
1135
+ - type: mrr_at_100
1136
+ value: 29.432000000000002
1137
+ - type: mrr_at_1000
1138
+ value: 29.498
1139
+ - type: mrr_at_3
1140
+ value: 25.049
1141
+ - type: mrr_at_5
1142
+ value: 26.857
1143
+ - type: ndcg_at_1
1144
+ value: 18.958
1145
+ - type: ndcg_at_10
1146
+ value: 22.21
1147
+ - type: ndcg_at_100
1148
+ value: 29.596
1149
+ - type: ndcg_at_1000
1150
+ value: 33.583
1151
+ - type: ndcg_at_3
1152
+ value: 16.994999999999997
1153
+ - type: ndcg_at_5
1154
+ value: 18.95
1155
+ - type: precision_at_1
1156
+ value: 18.958
1157
+ - type: precision_at_10
1158
+ value: 7.192
1159
+ - type: precision_at_100
1160
+ value: 1.5
1161
+ - type: precision_at_1000
1162
+ value: 0.22399999999999998
1163
+ - type: precision_at_3
1164
+ value: 12.573
1165
+ - type: precision_at_5
1166
+ value: 10.202
1167
+ - type: recall_at_1
1168
+ value: 8.853
1169
+ - type: recall_at_10
1170
+ value: 28.087
1171
+ - type: recall_at_100
1172
+ value: 53.701
1173
+ - type: recall_at_1000
1174
+ value: 76.29899999999999
1175
+ - type: recall_at_3
1176
+ value: 15.913
1177
+ - type: recall_at_5
1178
+ value: 20.658
1179
+ - task:
1180
+ type: Retrieval
1181
+ dataset:
1182
+ type: dbpedia-entity
1183
+ name: MTEB DBPedia
1184
+ config: default
1185
+ split: test
1186
+ revision: None
1187
+ metrics:
1188
+ - type: map_at_1
1189
+ value: 9.077
1190
+ - type: map_at_10
1191
+ value: 20.788999999999998
1192
+ - type: map_at_100
1193
+ value: 30.429000000000002
1194
+ - type: map_at_1000
1195
+ value: 32.143
1196
+ - type: map_at_3
1197
+ value: 14.692
1198
+ - type: map_at_5
1199
+ value: 17.139
1200
+ - type: mrr_at_1
1201
+ value: 70.75
1202
+ - type: mrr_at_10
1203
+ value: 78.036
1204
+ - type: mrr_at_100
1205
+ value: 78.401
1206
+ - type: mrr_at_1000
1207
+ value: 78.404
1208
+ - type: mrr_at_3
1209
+ value: 76.75
1210
+ - type: mrr_at_5
1211
+ value: 77.47500000000001
1212
+ - type: ndcg_at_1
1213
+ value: 58.12500000000001
1214
+ - type: ndcg_at_10
1215
+ value: 44.015
1216
+ - type: ndcg_at_100
1217
+ value: 49.247
1218
+ - type: ndcg_at_1000
1219
+ value: 56.211999999999996
1220
+ - type: ndcg_at_3
1221
+ value: 49.151
1222
+ - type: ndcg_at_5
1223
+ value: 46.195
1224
+ - type: precision_at_1
1225
+ value: 70.75
1226
+ - type: precision_at_10
1227
+ value: 35.5
1228
+ - type: precision_at_100
1229
+ value: 11.355
1230
+ - type: precision_at_1000
1231
+ value: 2.1950000000000003
1232
+ - type: precision_at_3
1233
+ value: 53.083000000000006
1234
+ - type: precision_at_5
1235
+ value: 44.800000000000004
1236
+ - type: recall_at_1
1237
+ value: 9.077
1238
+ - type: recall_at_10
1239
+ value: 26.259
1240
+ - type: recall_at_100
1241
+ value: 56.547000000000004
1242
+ - type: recall_at_1000
1243
+ value: 78.551
1244
+ - type: recall_at_3
1245
+ value: 16.162000000000003
1246
+ - type: recall_at_5
1247
+ value: 19.753999999999998
1248
+ - task:
1249
+ type: Classification
1250
+ dataset:
1251
+ type: mteb/emotion
1252
+ name: MTEB EmotionClassification
1253
+ config: default
1254
+ split: test
1255
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1256
+ metrics:
1257
+ - type: accuracy
1258
+ value: 49.44500000000001
1259
+ - type: f1
1260
+ value: 44.67067691783401
1261
+ - task:
1262
+ type: Retrieval
1263
+ dataset:
1264
+ type: fever
1265
+ name: MTEB FEVER
1266
+ config: default
1267
+ split: test
1268
+ revision: None
1269
+ metrics:
1270
+ - type: map_at_1
1271
+ value: 68.182
1272
+ - type: map_at_10
1273
+ value: 78.223
1274
+ - type: map_at_100
1275
+ value: 78.498
1276
+ - type: map_at_1000
1277
+ value: 78.512
1278
+ - type: map_at_3
1279
+ value: 76.71
1280
+ - type: map_at_5
1281
+ value: 77.725
1282
+ - type: mrr_at_1
1283
+ value: 73.177
1284
+ - type: mrr_at_10
1285
+ value: 82.513
1286
+ - type: mrr_at_100
1287
+ value: 82.633
1288
+ - type: mrr_at_1000
1289
+ value: 82.635
1290
+ - type: mrr_at_3
1291
+ value: 81.376
1292
+ - type: mrr_at_5
1293
+ value: 82.182
1294
+ - type: ndcg_at_1
1295
+ value: 73.177
1296
+ - type: ndcg_at_10
1297
+ value: 82.829
1298
+ - type: ndcg_at_100
1299
+ value: 83.84
1300
+ - type: ndcg_at_1000
1301
+ value: 84.07900000000001
1302
+ - type: ndcg_at_3
1303
+ value: 80.303
1304
+ - type: ndcg_at_5
1305
+ value: 81.846
1306
+ - type: precision_at_1
1307
+ value: 73.177
1308
+ - type: precision_at_10
1309
+ value: 10.241999999999999
1310
+ - type: precision_at_100
1311
+ value: 1.099
1312
+ - type: precision_at_1000
1313
+ value: 0.11399999999999999
1314
+ - type: precision_at_3
1315
+ value: 31.247999999999998
1316
+ - type: precision_at_5
1317
+ value: 19.697
1318
+ - type: recall_at_1
1319
+ value: 68.182
1320
+ - type: recall_at_10
1321
+ value: 92.657
1322
+ - type: recall_at_100
1323
+ value: 96.709
1324
+ - type: recall_at_1000
1325
+ value: 98.184
1326
+ - type: recall_at_3
1327
+ value: 85.9
1328
+ - type: recall_at_5
1329
+ value: 89.755
1330
+ - task:
1331
+ type: Retrieval
1332
+ dataset:
1333
+ type: fiqa
1334
+ name: MTEB FiQA2018
1335
+ config: default
1336
+ split: test
1337
+ revision: None
1338
+ metrics:
1339
+ - type: map_at_1
1340
+ value: 21.108
1341
+ - type: map_at_10
1342
+ value: 33.342
1343
+ - type: map_at_100
1344
+ value: 35.281
1345
+ - type: map_at_1000
1346
+ value: 35.478
1347
+ - type: map_at_3
1348
+ value: 29.067
1349
+ - type: map_at_5
1350
+ value: 31.563000000000002
1351
+ - type: mrr_at_1
1352
+ value: 41.667
1353
+ - type: mrr_at_10
1354
+ value: 49.913000000000004
1355
+ - type: mrr_at_100
1356
+ value: 50.724000000000004
1357
+ - type: mrr_at_1000
1358
+ value: 50.766
1359
+ - type: mrr_at_3
1360
+ value: 47.504999999999995
1361
+ - type: mrr_at_5
1362
+ value: 49.033
1363
+ - type: ndcg_at_1
1364
+ value: 41.667
1365
+ - type: ndcg_at_10
1366
+ value: 41.144
1367
+ - type: ndcg_at_100
1368
+ value: 48.326
1369
+ - type: ndcg_at_1000
1370
+ value: 51.486
1371
+ - type: ndcg_at_3
1372
+ value: 37.486999999999995
1373
+ - type: ndcg_at_5
1374
+ value: 38.78
1375
+ - type: precision_at_1
1376
+ value: 41.667
1377
+ - type: precision_at_10
1378
+ value: 11.358
1379
+ - type: precision_at_100
1380
+ value: 1.873
1381
+ - type: precision_at_1000
1382
+ value: 0.244
1383
+ - type: precision_at_3
1384
+ value: 25
1385
+ - type: precision_at_5
1386
+ value: 18.519
1387
+ - type: recall_at_1
1388
+ value: 21.108
1389
+ - type: recall_at_10
1390
+ value: 47.249
1391
+ - type: recall_at_100
1392
+ value: 74.52
1393
+ - type: recall_at_1000
1394
+ value: 93.31
1395
+ - type: recall_at_3
1396
+ value: 33.271
1397
+ - type: recall_at_5
1398
+ value: 39.723000000000006
1399
+ - task:
1400
+ type: Retrieval
1401
+ dataset:
1402
+ type: hotpotqa
1403
+ name: MTEB HotpotQA
1404
+ config: default
1405
+ split: test
1406
+ revision: None
1407
+ metrics:
1408
+ - type: map_at_1
1409
+ value: 40.317
1410
+ - type: map_at_10
1411
+ value: 64.861
1412
+ - type: map_at_100
1413
+ value: 65.697
1414
+ - type: map_at_1000
1415
+ value: 65.755
1416
+ - type: map_at_3
1417
+ value: 61.258
1418
+ - type: map_at_5
1419
+ value: 63.590999999999994
1420
+ - type: mrr_at_1
1421
+ value: 80.635
1422
+ - type: mrr_at_10
1423
+ value: 86.528
1424
+ - type: mrr_at_100
1425
+ value: 86.66199999999999
1426
+ - type: mrr_at_1000
1427
+ value: 86.666
1428
+ - type: mrr_at_3
1429
+ value: 85.744
1430
+ - type: mrr_at_5
1431
+ value: 86.24300000000001
1432
+ - type: ndcg_at_1
1433
+ value: 80.635
1434
+ - type: ndcg_at_10
1435
+ value: 73.13199999999999
1436
+ - type: ndcg_at_100
1437
+ value: 75.927
1438
+ - type: ndcg_at_1000
1439
+ value: 76.976
1440
+ - type: ndcg_at_3
1441
+ value: 68.241
1442
+ - type: ndcg_at_5
1443
+ value: 71.071
1444
+ - type: precision_at_1
1445
+ value: 80.635
1446
+ - type: precision_at_10
1447
+ value: 15.326
1448
+ - type: precision_at_100
1449
+ value: 1.7500000000000002
1450
+ - type: precision_at_1000
1451
+ value: 0.189
1452
+ - type: precision_at_3
1453
+ value: 43.961
1454
+ - type: precision_at_5
1455
+ value: 28.599999999999998
1456
+ - type: recall_at_1
1457
+ value: 40.317
1458
+ - type: recall_at_10
1459
+ value: 76.631
1460
+ - type: recall_at_100
1461
+ value: 87.495
1462
+ - type: recall_at_1000
1463
+ value: 94.362
1464
+ - type: recall_at_3
1465
+ value: 65.94200000000001
1466
+ - type: recall_at_5
1467
+ value: 71.499
1468
+ - task:
1469
+ type: Classification
1470
+ dataset:
1471
+ type: mteb/imdb
1472
+ name: MTEB ImdbClassification
1473
+ config: default
1474
+ split: test
1475
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1476
+ metrics:
1477
+ - type: accuracy
1478
+ value: 91.686
1479
+ - type: ap
1480
+ value: 87.5577120393173
1481
+ - type: f1
1482
+ value: 91.6629447355139
1483
+ - task:
1484
+ type: Retrieval
1485
+ dataset:
1486
+ type: msmarco
1487
+ name: MTEB MSMARCO
1488
+ config: default
1489
+ split: dev
1490
+ revision: None
1491
+ metrics:
1492
+ - type: map_at_1
1493
+ value: 23.702
1494
+ - type: map_at_10
1495
+ value: 36.414
1496
+ - type: map_at_100
1497
+ value: 37.561
1498
+ - type: map_at_1000
1499
+ value: 37.605
1500
+ - type: map_at_3
1501
+ value: 32.456
1502
+ - type: map_at_5
1503
+ value: 34.827000000000005
1504
+ - type: mrr_at_1
1505
+ value: 24.355
1506
+ - type: mrr_at_10
1507
+ value: 37.01
1508
+ - type: mrr_at_100
1509
+ value: 38.085
1510
+ - type: mrr_at_1000
1511
+ value: 38.123000000000005
1512
+ - type: mrr_at_3
1513
+ value: 33.117999999999995
1514
+ - type: mrr_at_5
1515
+ value: 35.452
1516
+ - type: ndcg_at_1
1517
+ value: 24.384
1518
+ - type: ndcg_at_10
1519
+ value: 43.456
1520
+ - type: ndcg_at_100
1521
+ value: 48.892
1522
+ - type: ndcg_at_1000
1523
+ value: 49.964
1524
+ - type: ndcg_at_3
1525
+ value: 35.475
1526
+ - type: ndcg_at_5
1527
+ value: 39.711
1528
+ - type: precision_at_1
1529
+ value: 24.384
1530
+ - type: precision_at_10
1531
+ value: 6.7940000000000005
1532
+ - type: precision_at_100
1533
+ value: 0.951
1534
+ - type: precision_at_1000
1535
+ value: 0.104
1536
+ - type: precision_at_3
1537
+ value: 15.052999999999999
1538
+ - type: precision_at_5
1539
+ value: 11.189
1540
+ - type: recall_at_1
1541
+ value: 23.702
1542
+ - type: recall_at_10
1543
+ value: 65.057
1544
+ - type: recall_at_100
1545
+ value: 90.021
1546
+ - type: recall_at_1000
1547
+ value: 98.142
1548
+ - type: recall_at_3
1549
+ value: 43.551
1550
+ - type: recall_at_5
1551
+ value: 53.738
1552
+ - task:
1553
+ type: Classification
1554
+ dataset:
1555
+ type: mteb/mtop_domain
1556
+ name: MTEB MTOPDomainClassification (en)
1557
+ config: en
1558
+ split: test
1559
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1560
+ metrics:
1561
+ - type: accuracy
1562
+ value: 94.62380300957591
1563
+ - type: f1
1564
+ value: 94.49871222100734
1565
+ - task:
1566
+ type: Classification
1567
+ dataset:
1568
+ type: mteb/mtop_intent
1569
+ name: MTEB MTOPIntentClassification (en)
1570
+ config: en
1571
+ split: test
1572
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1573
+ metrics:
1574
+ - type: accuracy
1575
+ value: 77.14090287277702
1576
+ - type: f1
1577
+ value: 60.32101258220515
1578
+ - task:
1579
+ type: Classification
1580
+ dataset:
1581
+ type: mteb/amazon_massive_intent
1582
+ name: MTEB MassiveIntentClassification (en)
1583
+ config: en
1584
+ split: test
1585
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1586
+ metrics:
1587
+ - type: accuracy
1588
+ value: 73.84330867518494
1589
+ - type: f1
1590
+ value: 71.92248688515255
1591
+ - task:
1592
+ type: Classification
1593
+ dataset:
1594
+ type: mteb/amazon_massive_scenario
1595
+ name: MTEB MassiveScenarioClassification (en)
1596
+ config: en
1597
+ split: test
1598
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1599
+ metrics:
1600
+ - type: accuracy
1601
+ value: 78.10692669804976
1602
+ - type: f1
1603
+ value: 77.9904839122866
1604
+ - task:
1605
+ type: Clustering
1606
+ dataset:
1607
+ type: mteb/medrxiv-clustering-p2p
1608
+ name: MTEB MedrxivClusteringP2P
1609
+ config: default
1610
+ split: test
1611
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1612
+ metrics:
1613
+ - type: v_measure
1614
+ value: 31.822988923078444
1615
+ - task:
1616
+ type: Clustering
1617
+ dataset:
1618
+ type: mteb/medrxiv-clustering-s2s
1619
+ name: MTEB MedrxivClusteringS2S
1620
+ config: default
1621
+ split: test
1622
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1623
+ metrics:
1624
+ - type: v_measure
1625
+ value: 30.38394880253403
1626
+ - task:
1627
+ type: Reranking
1628
+ dataset:
1629
+ type: mteb/mind_small
1630
+ name: MTEB MindSmallReranking
1631
+ config: default
1632
+ split: test
1633
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1634
+ metrics:
1635
+ - type: map
1636
+ value: 31.82504612539082
1637
+ - type: mrr
1638
+ value: 32.84462298174977
1639
+ - task:
1640
+ type: Retrieval
1641
+ dataset:
1642
+ type: nfcorpus
1643
+ name: MTEB NFCorpus
1644
+ config: default
1645
+ split: test
1646
+ revision: None
1647
+ metrics:
1648
+ - type: map_at_1
1649
+ value: 6.029
1650
+ - type: map_at_10
1651
+ value: 14.088999999999999
1652
+ - type: map_at_100
1653
+ value: 17.601
1654
+ - type: map_at_1000
1655
+ value: 19.144
1656
+ - type: map_at_3
1657
+ value: 10.156
1658
+ - type: map_at_5
1659
+ value: 11.892
1660
+ - type: mrr_at_1
1661
+ value: 46.44
1662
+ - type: mrr_at_10
1663
+ value: 56.596999999999994
1664
+ - type: mrr_at_100
1665
+ value: 57.11000000000001
1666
+ - type: mrr_at_1000
1667
+ value: 57.14
1668
+ - type: mrr_at_3
1669
+ value: 54.334
1670
+ - type: mrr_at_5
1671
+ value: 55.774
1672
+ - type: ndcg_at_1
1673
+ value: 44.891999999999996
1674
+ - type: ndcg_at_10
1675
+ value: 37.134
1676
+ - type: ndcg_at_100
1677
+ value: 33.652
1678
+ - type: ndcg_at_1000
1679
+ value: 42.548
1680
+ - type: ndcg_at_3
1681
+ value: 41.851
1682
+ - type: ndcg_at_5
1683
+ value: 39.842
1684
+ - type: precision_at_1
1685
+ value: 46.44
1686
+ - type: precision_at_10
1687
+ value: 27.647
1688
+ - type: precision_at_100
1689
+ value: 8.309999999999999
1690
+ - type: precision_at_1000
1691
+ value: 2.146
1692
+ - type: precision_at_3
1693
+ value: 39.422000000000004
1694
+ - type: precision_at_5
1695
+ value: 34.675
1696
+ - type: recall_at_1
1697
+ value: 6.029
1698
+ - type: recall_at_10
1699
+ value: 18.907
1700
+ - type: recall_at_100
1701
+ value: 33.76
1702
+ - type: recall_at_1000
1703
+ value: 65.14999999999999
1704
+ - type: recall_at_3
1705
+ value: 11.584999999999999
1706
+ - type: recall_at_5
1707
+ value: 14.626
1708
+ - task:
1709
+ type: Retrieval
1710
+ dataset:
1711
+ type: nq
1712
+ name: MTEB NQ
1713
+ config: default
1714
+ split: test
1715
+ revision: None
1716
+ metrics:
1717
+ - type: map_at_1
1718
+ value: 39.373000000000005
1719
+ - type: map_at_10
1720
+ value: 55.836
1721
+ - type: map_at_100
1722
+ value: 56.611999999999995
1723
+ - type: map_at_1000
1724
+ value: 56.63
1725
+ - type: map_at_3
1726
+ value: 51.747
1727
+ - type: map_at_5
1728
+ value: 54.337999999999994
1729
+ - type: mrr_at_1
1730
+ value: 44.147999999999996
1731
+ - type: mrr_at_10
1732
+ value: 58.42699999999999
1733
+ - type: mrr_at_100
1734
+ value: 58.902
1735
+ - type: mrr_at_1000
1736
+ value: 58.914
1737
+ - type: mrr_at_3
1738
+ value: 55.156000000000006
1739
+ - type: mrr_at_5
1740
+ value: 57.291000000000004
1741
+ - type: ndcg_at_1
1742
+ value: 44.119
1743
+ - type: ndcg_at_10
1744
+ value: 63.444
1745
+ - type: ndcg_at_100
1746
+ value: 66.40599999999999
1747
+ - type: ndcg_at_1000
1748
+ value: 66.822
1749
+ - type: ndcg_at_3
1750
+ value: 55.962
1751
+ - type: ndcg_at_5
1752
+ value: 60.228
1753
+ - type: precision_at_1
1754
+ value: 44.119
1755
+ - type: precision_at_10
1756
+ value: 10.006
1757
+ - type: precision_at_100
1758
+ value: 1.17
1759
+ - type: precision_at_1000
1760
+ value: 0.121
1761
+ - type: precision_at_3
1762
+ value: 25.135
1763
+ - type: precision_at_5
1764
+ value: 17.59
1765
+ - type: recall_at_1
1766
+ value: 39.373000000000005
1767
+ - type: recall_at_10
1768
+ value: 83.78999999999999
1769
+ - type: recall_at_100
1770
+ value: 96.246
1771
+ - type: recall_at_1000
1772
+ value: 99.324
1773
+ - type: recall_at_3
1774
+ value: 64.71900000000001
1775
+ - type: recall_at_5
1776
+ value: 74.508
1777
+ - task:
1778
+ type: Retrieval
1779
+ dataset:
1780
+ type: quora
1781
+ name: MTEB QuoraRetrieval
1782
+ config: default
1783
+ split: test
1784
+ revision: None
1785
+ metrics:
1786
+ - type: map_at_1
1787
+ value: 69.199
1788
+ - type: map_at_10
1789
+ value: 82.892
1790
+ - type: map_at_100
1791
+ value: 83.578
1792
+ - type: map_at_1000
1793
+ value: 83.598
1794
+ - type: map_at_3
1795
+ value: 79.948
1796
+ - type: map_at_5
1797
+ value: 81.779
1798
+ - type: mrr_at_1
1799
+ value: 79.67
1800
+ - type: mrr_at_10
1801
+ value: 86.115
1802
+ - type: mrr_at_100
1803
+ value: 86.249
1804
+ - type: mrr_at_1000
1805
+ value: 86.251
1806
+ - type: mrr_at_3
1807
+ value: 85.08200000000001
1808
+ - type: mrr_at_5
1809
+ value: 85.783
1810
+ - type: ndcg_at_1
1811
+ value: 79.67
1812
+ - type: ndcg_at_10
1813
+ value: 86.839
1814
+ - type: ndcg_at_100
1815
+ value: 88.252
1816
+ - type: ndcg_at_1000
1817
+ value: 88.401
1818
+ - type: ndcg_at_3
1819
+ value: 83.86200000000001
1820
+ - type: ndcg_at_5
1821
+ value: 85.473
1822
+ - type: precision_at_1
1823
+ value: 79.67
1824
+ - type: precision_at_10
1825
+ value: 13.19
1826
+ - type: precision_at_100
1827
+ value: 1.521
1828
+ - type: precision_at_1000
1829
+ value: 0.157
1830
+ - type: precision_at_3
1831
+ value: 36.677
1832
+ - type: precision_at_5
1833
+ value: 24.118000000000002
1834
+ - type: recall_at_1
1835
+ value: 69.199
1836
+ - type: recall_at_10
1837
+ value: 94.321
1838
+ - type: recall_at_100
1839
+ value: 99.20400000000001
1840
+ - type: recall_at_1000
1841
+ value: 99.947
1842
+ - type: recall_at_3
1843
+ value: 85.787
1844
+ - type: recall_at_5
1845
+ value: 90.365
1846
+ - task:
1847
+ type: Clustering
1848
+ dataset:
1849
+ type: mteb/reddit-clustering
1850
+ name: MTEB RedditClustering
1851
+ config: default
1852
+ split: test
1853
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1854
+ metrics:
1855
+ - type: v_measure
1856
+ value: 55.82810046856353
1857
+ - task:
1858
+ type: Clustering
1859
+ dataset:
1860
+ type: mteb/reddit-clustering-p2p
1861
+ name: MTEB RedditClusteringP2P
1862
+ config: default
1863
+ split: test
1864
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1865
+ metrics:
1866
+ - type: v_measure
1867
+ value: 63.38132611783628
1868
+ - task:
1869
+ type: Retrieval
1870
+ dataset:
1871
+ type: scidocs
1872
+ name: MTEB SCIDOCS
1873
+ config: default
1874
+ split: test
1875
+ revision: None
1876
+ metrics:
1877
+ - type: map_at_1
1878
+ value: 5.127000000000001
1879
+ - type: map_at_10
1880
+ value: 12.235
1881
+ - type: map_at_100
1882
+ value: 14.417
1883
+ - type: map_at_1000
1884
+ value: 14.75
1885
+ - type: map_at_3
1886
+ value: 8.906
1887
+ - type: map_at_5
1888
+ value: 10.591000000000001
1889
+ - type: mrr_at_1
1890
+ value: 25.2
1891
+ - type: mrr_at_10
1892
+ value: 35.879
1893
+ - type: mrr_at_100
1894
+ value: 36.935
1895
+ - type: mrr_at_1000
1896
+ value: 36.997
1897
+ - type: mrr_at_3
1898
+ value: 32.783
1899
+ - type: mrr_at_5
1900
+ value: 34.367999999999995
1901
+ - type: ndcg_at_1
1902
+ value: 25.2
1903
+ - type: ndcg_at_10
1904
+ value: 20.509
1905
+ - type: ndcg_at_100
1906
+ value: 28.67
1907
+ - type: ndcg_at_1000
1908
+ value: 34.42
1909
+ - type: ndcg_at_3
1910
+ value: 19.948
1911
+ - type: ndcg_at_5
1912
+ value: 17.166
1913
+ - type: precision_at_1
1914
+ value: 25.2
1915
+ - type: precision_at_10
1916
+ value: 10.440000000000001
1917
+ - type: precision_at_100
1918
+ value: 2.214
1919
+ - type: precision_at_1000
1920
+ value: 0.359
1921
+ - type: precision_at_3
1922
+ value: 18.533
1923
+ - type: precision_at_5
1924
+ value: 14.860000000000001
1925
+ - type: recall_at_1
1926
+ value: 5.127000000000001
1927
+ - type: recall_at_10
1928
+ value: 21.147
1929
+ - type: recall_at_100
1930
+ value: 44.946999999999996
1931
+ - type: recall_at_1000
1932
+ value: 72.89
1933
+ - type: recall_at_3
1934
+ value: 11.277
1935
+ - type: recall_at_5
1936
+ value: 15.042
1937
+ - task:
1938
+ type: STS
1939
+ dataset:
1940
+ type: mteb/sickr-sts
1941
+ name: MTEB SICK-R
1942
+ config: default
1943
+ split: test
1944
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1945
+ metrics:
1946
+ - type: cos_sim_pearson
1947
+ value: 83.0373011786213
1948
+ - type: cos_sim_spearman
1949
+ value: 79.27889560856613
1950
+ - type: euclidean_pearson
1951
+ value: 80.31186315495655
1952
+ - type: euclidean_spearman
1953
+ value: 79.41630415280811
1954
+ - type: manhattan_pearson
1955
+ value: 80.31755140442013
1956
+ - type: manhattan_spearman
1957
+ value: 79.43069870027611
1958
+ - task:
1959
+ type: STS
1960
+ dataset:
1961
+ type: mteb/sts12-sts
1962
+ name: MTEB STS12
1963
+ config: default
1964
+ split: test
1965
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1966
+ metrics:
1967
+ - type: cos_sim_pearson
1968
+ value: 84.8659751342045
1969
+ - type: cos_sim_spearman
1970
+ value: 76.95377612997667
1971
+ - type: euclidean_pearson
1972
+ value: 81.24552945497848
1973
+ - type: euclidean_spearman
1974
+ value: 77.18236963555253
1975
+ - type: manhattan_pearson
1976
+ value: 81.26477607759037
1977
+ - type: manhattan_spearman
1978
+ value: 77.13821753062756
1979
+ - task:
1980
+ type: STS
1981
+ dataset:
1982
+ type: mteb/sts13-sts
1983
+ name: MTEB STS13
1984
+ config: default
1985
+ split: test
1986
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1987
+ metrics:
1988
+ - type: cos_sim_pearson
1989
+ value: 83.34597139044875
1990
+ - type: cos_sim_spearman
1991
+ value: 84.124169425592
1992
+ - type: euclidean_pearson
1993
+ value: 83.68590721511401
1994
+ - type: euclidean_spearman
1995
+ value: 84.18846190846398
1996
+ - type: manhattan_pearson
1997
+ value: 83.57630235061498
1998
+ - type: manhattan_spearman
1999
+ value: 84.10244043726902
2000
+ - task:
2001
+ type: STS
2002
+ dataset:
2003
+ type: mteb/sts14-sts
2004
+ name: MTEB STS14
2005
+ config: default
2006
+ split: test
2007
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2008
+ metrics:
2009
+ - type: cos_sim_pearson
2010
+ value: 82.67641885599572
2011
+ - type: cos_sim_spearman
2012
+ value: 80.46450725650428
2013
+ - type: euclidean_pearson
2014
+ value: 81.61645042715865
2015
+ - type: euclidean_spearman
2016
+ value: 80.61418394236874
2017
+ - type: manhattan_pearson
2018
+ value: 81.55712034928871
2019
+ - type: manhattan_spearman
2020
+ value: 80.57905670523951
2021
+ - task:
2022
+ type: STS
2023
+ dataset:
2024
+ type: mteb/sts15-sts
2025
+ name: MTEB STS15
2026
+ config: default
2027
+ split: test
2028
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2029
+ metrics:
2030
+ - type: cos_sim_pearson
2031
+ value: 88.86650310886782
2032
+ - type: cos_sim_spearman
2033
+ value: 89.76081629222328
2034
+ - type: euclidean_pearson
2035
+ value: 89.1530747029954
2036
+ - type: euclidean_spearman
2037
+ value: 89.80990657280248
2038
+ - type: manhattan_pearson
2039
+ value: 89.10640563278132
2040
+ - type: manhattan_spearman
2041
+ value: 89.76282108434047
2042
+ - task:
2043
+ type: STS
2044
+ dataset:
2045
+ type: mteb/sts16-sts
2046
+ name: MTEB STS16
2047
+ config: default
2048
+ split: test
2049
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2050
+ metrics:
2051
+ - type: cos_sim_pearson
2052
+ value: 83.93864027911118
2053
+ - type: cos_sim_spearman
2054
+ value: 85.47096193999023
2055
+ - type: euclidean_pearson
2056
+ value: 85.03141840870533
2057
+ - type: euclidean_spearman
2058
+ value: 85.43124029598181
2059
+ - type: manhattan_pearson
2060
+ value: 84.99002664393512
2061
+ - type: manhattan_spearman
2062
+ value: 85.39169195120834
2063
+ - task:
2064
+ type: STS
2065
+ dataset:
2066
+ type: mteb/sts17-crosslingual-sts
2067
+ name: MTEB STS17 (en-en)
2068
+ config: en-en
2069
+ split: test
2070
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2071
+ metrics:
2072
+ - type: cos_sim_pearson
2073
+ value: 88.7045343749832
2074
+ - type: cos_sim_spearman
2075
+ value: 89.03262221146677
2076
+ - type: euclidean_pearson
2077
+ value: 89.56078218264365
2078
+ - type: euclidean_spearman
2079
+ value: 89.17827006466868
2080
+ - type: manhattan_pearson
2081
+ value: 89.52717595468582
2082
+ - type: manhattan_spearman
2083
+ value: 89.15878115952923
2084
+ - task:
2085
+ type: STS
2086
+ dataset:
2087
+ type: mteb/sts22-crosslingual-sts
2088
+ name: MTEB STS22 (en)
2089
+ config: en
2090
+ split: test
2091
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2092
+ metrics:
2093
+ - type: cos_sim_pearson
2094
+ value: 64.20191302875551
2095
+ - type: cos_sim_spearman
2096
+ value: 64.11446552557646
2097
+ - type: euclidean_pearson
2098
+ value: 64.6918197393619
2099
+ - type: euclidean_spearman
2100
+ value: 63.440182631197764
2101
+ - type: manhattan_pearson
2102
+ value: 64.55692904121835
2103
+ - type: manhattan_spearman
2104
+ value: 63.424877742756266
2105
+ - task:
2106
+ type: STS
2107
+ dataset:
2108
+ type: mteb/stsbenchmark-sts
2109
+ name: MTEB STSBenchmark
2110
+ config: default
2111
+ split: test
2112
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2113
+ metrics:
2114
+ - type: cos_sim_pearson
2115
+ value: 86.37793104662344
2116
+ - type: cos_sim_spearman
2117
+ value: 87.7357802629067
2118
+ - type: euclidean_pearson
2119
+ value: 87.4286301545109
2120
+ - type: euclidean_spearman
2121
+ value: 87.78452920777421
2122
+ - type: manhattan_pearson
2123
+ value: 87.42445169331255
2124
+ - type: manhattan_spearman
2125
+ value: 87.78537677249598
2126
+ - task:
2127
+ type: Reranking
2128
+ dataset:
2129
+ type: mteb/scidocs-reranking
2130
+ name: MTEB SciDocsRR
2131
+ config: default
2132
+ split: test
2133
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2134
+ metrics:
2135
+ - type: map
2136
+ value: 84.31465405081792
2137
+ - type: mrr
2138
+ value: 95.7173781193389
2139
+ - task:
2140
+ type: Retrieval
2141
+ dataset:
2142
+ type: scifact
2143
+ name: MTEB SciFact
2144
+ config: default
2145
+ split: test
2146
+ revision: None
2147
+ metrics:
2148
+ - type: map_at_1
2149
+ value: 57.760999999999996
2150
+ - type: map_at_10
2151
+ value: 67.904
2152
+ - type: map_at_100
2153
+ value: 68.539
2154
+ - type: map_at_1000
2155
+ value: 68.562
2156
+ - type: map_at_3
2157
+ value: 65.415
2158
+ - type: map_at_5
2159
+ value: 66.788
2160
+ - type: mrr_at_1
2161
+ value: 60.333000000000006
2162
+ - type: mrr_at_10
2163
+ value: 68.797
2164
+ - type: mrr_at_100
2165
+ value: 69.236
2166
+ - type: mrr_at_1000
2167
+ value: 69.257
2168
+ - type: mrr_at_3
2169
+ value: 66.667
2170
+ - type: mrr_at_5
2171
+ value: 67.967
2172
+ - type: ndcg_at_1
2173
+ value: 60.333000000000006
2174
+ - type: ndcg_at_10
2175
+ value: 72.24199999999999
2176
+ - type: ndcg_at_100
2177
+ value: 74.86
2178
+ - type: ndcg_at_1000
2179
+ value: 75.354
2180
+ - type: ndcg_at_3
2181
+ value: 67.93400000000001
2182
+ - type: ndcg_at_5
2183
+ value: 70.02199999999999
2184
+ - type: precision_at_1
2185
+ value: 60.333000000000006
2186
+ - type: precision_at_10
2187
+ value: 9.533
2188
+ - type: precision_at_100
2189
+ value: 1.09
2190
+ - type: precision_at_1000
2191
+ value: 0.11299999999999999
2192
+ - type: precision_at_3
2193
+ value: 26.778000000000002
2194
+ - type: precision_at_5
2195
+ value: 17.467
2196
+ - type: recall_at_1
2197
+ value: 57.760999999999996
2198
+ - type: recall_at_10
2199
+ value: 84.383
2200
+ - type: recall_at_100
2201
+ value: 96.267
2202
+ - type: recall_at_1000
2203
+ value: 100
2204
+ - type: recall_at_3
2205
+ value: 72.628
2206
+ - type: recall_at_5
2207
+ value: 78.094
2208
+ - task:
2209
+ type: PairClassification
2210
+ dataset:
2211
+ type: mteb/sprintduplicatequestions-pairclassification
2212
+ name: MTEB SprintDuplicateQuestions
2213
+ config: default
2214
+ split: test
2215
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2216
+ metrics:
2217
+ - type: cos_sim_accuracy
2218
+ value: 99.8029702970297
2219
+ - type: cos_sim_ap
2220
+ value: 94.9210324173411
2221
+ - type: cos_sim_f1
2222
+ value: 89.8521162672106
2223
+ - type: cos_sim_precision
2224
+ value: 91.67533818938605
2225
+ - type: cos_sim_recall
2226
+ value: 88.1
2227
+ - type: dot_accuracy
2228
+ value: 99.69504950495049
2229
+ - type: dot_ap
2230
+ value: 90.4919719146181
2231
+ - type: dot_f1
2232
+ value: 84.72289156626506
2233
+ - type: dot_precision
2234
+ value: 81.76744186046511
2235
+ - type: dot_recall
2236
+ value: 87.9
2237
+ - type: euclidean_accuracy
2238
+ value: 99.79702970297029
2239
+ - type: euclidean_ap
2240
+ value: 94.87827463795753
2241
+ - type: euclidean_f1
2242
+ value: 89.55680081507896
2243
+ - type: euclidean_precision
2244
+ value: 91.27725856697819
2245
+ - type: euclidean_recall
2246
+ value: 87.9
2247
+ - type: manhattan_accuracy
2248
+ value: 99.7990099009901
2249
+ - type: manhattan_ap
2250
+ value: 94.87587025149682
2251
+ - type: manhattan_f1
2252
+ value: 89.76298537569339
2253
+ - type: manhattan_precision
2254
+ value: 90.53916581892166
2255
+ - type: manhattan_recall
2256
+ value: 89
2257
+ - type: max_accuracy
2258
+ value: 99.8029702970297
2259
+ - type: max_ap
2260
+ value: 94.9210324173411
2261
+ - type: max_f1
2262
+ value: 89.8521162672106
2263
+ - task:
2264
+ type: Clustering
2265
+ dataset:
2266
+ type: mteb/stackexchange-clustering
2267
+ name: MTEB StackExchangeClustering
2268
+ config: default
2269
+ split: test
2270
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2271
+ metrics:
2272
+ - type: v_measure
2273
+ value: 65.92385753948724
2274
+ - task:
2275
+ type: Clustering
2276
+ dataset:
2277
+ type: mteb/stackexchange-clustering-p2p
2278
+ name: MTEB StackExchangeClusteringP2P
2279
+ config: default
2280
+ split: test
2281
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2282
+ metrics:
2283
+ - type: v_measure
2284
+ value: 33.671756975431144
2285
+ - task:
2286
+ type: Reranking
2287
+ dataset:
2288
+ type: mteb/stackoverflowdupquestions-reranking
2289
+ name: MTEB StackOverflowDupQuestions
2290
+ config: default
2291
+ split: test
2292
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2293
+ metrics:
2294
+ - type: map
2295
+ value: 50.677928036739004
2296
+ - type: mrr
2297
+ value: 51.56413133435193
2298
+ - task:
2299
+ type: Summarization
2300
+ dataset:
2301
+ type: mteb/summeval
2302
+ name: MTEB SummEval
2303
+ config: default
2304
+ split: test
2305
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2306
+ metrics:
2307
+ - type: cos_sim_pearson
2308
+ value: 30.523589340819683
2309
+ - type: cos_sim_spearman
2310
+ value: 30.187407518823235
2311
+ - type: dot_pearson
2312
+ value: 29.039713969699015
2313
+ - type: dot_spearman
2314
+ value: 29.114740651155508
2315
+ - task:
2316
+ type: Retrieval
2317
+ dataset:
2318
+ type: trec-covid
2319
+ name: MTEB TRECCOVID
2320
+ config: default
2321
+ split: test
2322
+ revision: None
2323
+ metrics:
2324
+ - type: map_at_1
2325
+ value: 0.211
2326
+ - type: map_at_10
2327
+ value: 1.6199999999999999
2328
+ - type: map_at_100
2329
+ value: 8.658000000000001
2330
+ - type: map_at_1000
2331
+ value: 21.538
2332
+ - type: map_at_3
2333
+ value: 0.575
2334
+ - type: map_at_5
2335
+ value: 0.919
2336
+ - type: mrr_at_1
2337
+ value: 78
2338
+ - type: mrr_at_10
2339
+ value: 86.18599999999999
2340
+ - type: mrr_at_100
2341
+ value: 86.18599999999999
2342
+ - type: mrr_at_1000
2343
+ value: 86.18599999999999
2344
+ - type: mrr_at_3
2345
+ value: 85
2346
+ - type: mrr_at_5
2347
+ value: 85.9
2348
+ - type: ndcg_at_1
2349
+ value: 74
2350
+ - type: ndcg_at_10
2351
+ value: 66.542
2352
+ - type: ndcg_at_100
2353
+ value: 50.163999999999994
2354
+ - type: ndcg_at_1000
2355
+ value: 45.696999999999996
2356
+ - type: ndcg_at_3
2357
+ value: 71.531
2358
+ - type: ndcg_at_5
2359
+ value: 70.45
2360
+ - type: precision_at_1
2361
+ value: 78
2362
+ - type: precision_at_10
2363
+ value: 69.39999999999999
2364
+ - type: precision_at_100
2365
+ value: 51.06
2366
+ - type: precision_at_1000
2367
+ value: 20.022000000000002
2368
+ - type: precision_at_3
2369
+ value: 76
2370
+ - type: precision_at_5
2371
+ value: 74.8
2372
+ - type: recall_at_1
2373
+ value: 0.211
2374
+ - type: recall_at_10
2375
+ value: 1.813
2376
+ - type: recall_at_100
2377
+ value: 12.098
2378
+ - type: recall_at_1000
2379
+ value: 42.618
2380
+ - type: recall_at_3
2381
+ value: 0.603
2382
+ - type: recall_at_5
2383
+ value: 0.987
2384
+ - task:
2385
+ type: Retrieval
2386
+ dataset:
2387
+ type: webis-touche2020
2388
+ name: MTEB Touche2020
2389
+ config: default
2390
+ split: test
2391
+ revision: None
2392
+ metrics:
2393
+ - type: map_at_1
2394
+ value: 2.2079999999999997
2395
+ - type: map_at_10
2396
+ value: 7.777000000000001
2397
+ - type: map_at_100
2398
+ value: 12.825000000000001
2399
+ - type: map_at_1000
2400
+ value: 14.196
2401
+ - type: map_at_3
2402
+ value: 4.285
2403
+ - type: map_at_5
2404
+ value: 6.177
2405
+ - type: mrr_at_1
2406
+ value: 30.612000000000002
2407
+ - type: mrr_at_10
2408
+ value: 42.635
2409
+ - type: mrr_at_100
2410
+ value: 43.955
2411
+ - type: mrr_at_1000
2412
+ value: 43.955
2413
+ - type: mrr_at_3
2414
+ value: 38.435
2415
+ - type: mrr_at_5
2416
+ value: 41.088
2417
+ - type: ndcg_at_1
2418
+ value: 28.571
2419
+ - type: ndcg_at_10
2420
+ value: 20.666999999999998
2421
+ - type: ndcg_at_100
2422
+ value: 31.840000000000003
2423
+ - type: ndcg_at_1000
2424
+ value: 43.191
2425
+ - type: ndcg_at_3
2426
+ value: 23.45
2427
+ - type: ndcg_at_5
2428
+ value: 22.994
2429
+ - type: precision_at_1
2430
+ value: 30.612000000000002
2431
+ - type: precision_at_10
2432
+ value: 17.959
2433
+ - type: precision_at_100
2434
+ value: 6.755
2435
+ - type: precision_at_1000
2436
+ value: 1.4200000000000002
2437
+ - type: precision_at_3
2438
+ value: 23.810000000000002
2439
+ - type: precision_at_5
2440
+ value: 23.673
2441
+ - type: recall_at_1
2442
+ value: 2.2079999999999997
2443
+ - type: recall_at_10
2444
+ value: 13.144
2445
+ - type: recall_at_100
2446
+ value: 42.491
2447
+ - type: recall_at_1000
2448
+ value: 77.04299999999999
2449
+ - type: recall_at_3
2450
+ value: 5.3469999999999995
2451
+ - type: recall_at_5
2452
+ value: 9.139
2453
+ - task:
2454
+ type: Classification
2455
+ dataset:
2456
+ type: mteb/toxic_conversations_50k
2457
+ name: MTEB ToxicConversationsClassification
2458
+ config: default
2459
+ split: test
2460
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2461
+ metrics:
2462
+ - type: accuracy
2463
+ value: 70.9044
2464
+ - type: ap
2465
+ value: 14.625783489340755
2466
+ - type: f1
2467
+ value: 54.814936562590546
2468
+ - task:
2469
+ type: Classification
2470
+ dataset:
2471
+ type: mteb/tweet_sentiment_extraction
2472
+ name: MTEB TweetSentimentExtractionClassification
2473
+ config: default
2474
+ split: test
2475
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2476
+ metrics:
2477
+ - type: accuracy
2478
+ value: 60.94227504244483
2479
+ - type: f1
2480
+ value: 61.22516038508854
2481
+ - task:
2482
+ type: Clustering
2483
+ dataset:
2484
+ type: mteb/twentynewsgroups-clustering
2485
+ name: MTEB TwentyNewsgroupsClustering
2486
+ config: default
2487
+ split: test
2488
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2489
+ metrics:
2490
+ - type: v_measure
2491
+ value: 49.602409155145864
2492
+ - task:
2493
+ type: PairClassification
2494
+ dataset:
2495
+ type: mteb/twittersemeval2015-pairclassification
2496
+ name: MTEB TwitterSemEval2015
2497
+ config: default
2498
+ split: test
2499
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2500
+ metrics:
2501
+ - type: cos_sim_accuracy
2502
+ value: 86.94641473445789
2503
+ - type: cos_sim_ap
2504
+ value: 76.91572747061197
2505
+ - type: cos_sim_f1
2506
+ value: 70.14348097317529
2507
+ - type: cos_sim_precision
2508
+ value: 66.53254437869822
2509
+ - type: cos_sim_recall
2510
+ value: 74.1688654353562
2511
+ - type: dot_accuracy
2512
+ value: 84.80061989628658
2513
+ - type: dot_ap
2514
+ value: 70.7952548895177
2515
+ - type: dot_f1
2516
+ value: 65.44780728844965
2517
+ - type: dot_precision
2518
+ value: 61.53310104529617
2519
+ - type: dot_recall
2520
+ value: 69.89445910290237
2521
+ - type: euclidean_accuracy
2522
+ value: 86.94641473445789
2523
+ - type: euclidean_ap
2524
+ value: 76.80774009393652
2525
+ - type: euclidean_f1
2526
+ value: 70.30522503879979
2527
+ - type: euclidean_precision
2528
+ value: 68.94977168949772
2529
+ - type: euclidean_recall
2530
+ value: 71.71503957783642
2531
+ - type: manhattan_accuracy
2532
+ value: 86.8629671574179
2533
+ - type: manhattan_ap
2534
+ value: 76.76518632600317
2535
+ - type: manhattan_f1
2536
+ value: 70.16056518946692
2537
+ - type: manhattan_precision
2538
+ value: 68.360450563204
2539
+ - type: manhattan_recall
2540
+ value: 72.0580474934037
2541
+ - type: max_accuracy
2542
+ value: 86.94641473445789
2543
+ - type: max_ap
2544
+ value: 76.91572747061197
2545
+ - type: max_f1
2546
+ value: 70.30522503879979
2547
+ - task:
2548
+ type: PairClassification
2549
+ dataset:
2550
+ type: mteb/twitterurlcorpus-pairclassification
2551
+ name: MTEB TwitterURLCorpus
2552
+ config: default
2553
+ split: test
2554
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2555
+ metrics:
2556
+ - type: cos_sim_accuracy
2557
+ value: 89.10428066907285
2558
+ - type: cos_sim_ap
2559
+ value: 86.25114759921435
2560
+ - type: cos_sim_f1
2561
+ value: 78.37857884586856
2562
+ - type: cos_sim_precision
2563
+ value: 75.60818546078993
2564
+ - type: cos_sim_recall
2565
+ value: 81.35971666153372
2566
+ - type: dot_accuracy
2567
+ value: 87.41995575736406
2568
+ - type: dot_ap
2569
+ value: 81.51838010086782
2570
+ - type: dot_f1
2571
+ value: 74.77398015435503
2572
+ - type: dot_precision
2573
+ value: 71.53002390662354
2574
+ - type: dot_recall
2575
+ value: 78.32614721281182
2576
+ - type: euclidean_accuracy
2577
+ value: 89.12368533395428
2578
+ - type: euclidean_ap
2579
+ value: 86.33456799874504
2580
+ - type: euclidean_f1
2581
+ value: 78.45496750232127
2582
+ - type: euclidean_precision
2583
+ value: 75.78388462366364
2584
+ - type: euclidean_recall
2585
+ value: 81.32121958731136
2586
+ - type: manhattan_accuracy
2587
+ value: 89.10622113556099
2588
+ - type: manhattan_ap
2589
+ value: 86.31215061745333
2590
+ - type: manhattan_f1
2591
+ value: 78.40684906011539
2592
+ - type: manhattan_precision
2593
+ value: 75.89536643366722
2594
+ - type: manhattan_recall
2595
+ value: 81.09023714197721
2596
+ - type: max_accuracy
2597
+ value: 89.12368533395428
2598
+ - type: max_ap
2599
+ value: 86.33456799874504
2600
+ - type: max_f1
2601
+ value: 78.45496750232127
2602
+ language:
2603
+ - en
2604
  license: mit
2605
  ---
2606
+
2607
+ # E5-large-v2
2608
+
2609
+ [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
2610
+ Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
2611
+
2612
+ This model has 24 layers and the embedding size is 1024.
2613
+
2614
+ ## Usage
2615
+
2616
+ Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
2617
+
2618
+ ```python
2619
+ import torch.nn.functional as F
2620
+
2621
+ from torch import Tensor
2622
+ from transformers import AutoTokenizer, AutoModel
2623
+
2624
+
2625
+ def average_pool(last_hidden_states: Tensor,
2626
+ attention_mask: Tensor) -> Tensor:
2627
+ last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
2628
+ return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
2629
+
2630
+
2631
+ # Each input text should start with "query: " or "passage: ".
2632
+ # For tasks other than retrieval, you can simply use the "query: " prefix.
2633
+ input_texts = ['query: how much protein should a female eat',
2634
+ 'query: summit define',
2635
+ "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
2636
+ "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."]
2637
+
2638
+ tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-large-v2')
2639
+ model = AutoModel.from_pretrained('intfloat/e5-large-v2')
2640
+
2641
+ # Tokenize the input texts
2642
+ batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
2643
+
2644
+ outputs = model(**batch_dict)
2645
+ embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
2646
+
2647
+ # normalize embeddings
2648
+ embeddings = F.normalize(embeddings, p=2, dim=1)
2649
+ scores = (embeddings[:2] @ embeddings[2:].T) * 100
2650
+ print(scores.tolist())
2651
+ ```
2652
+
2653
+ ## Training Details
2654
+
2655
+ Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf).
2656
+
2657
+ ## Benchmark Evaluation
2658
+
2659
+ Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results
2660
+ on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316).
2661
+
2662
+ ## Support for Sentence Transformers
2663
+
2664
+ Below is an example for usage with sentence_transformers.
2665
+ ```python
2666
+ from sentence_transformers import SentenceTransformer
2667
+ model = SentenceTransformer('intfloat/e5-large-v2')
2668
+ input_texts = [
2669
+ 'query: how much protein should a female eat',
2670
+ 'query: summit define',
2671
+ "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
2672
+ "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
2673
+ ]
2674
+ embeddings = model.encode(input_texts, normalize_embeddings=True)
2675
+ ```
2676
+
2677
+ Package requirements
2678
+
2679
+ `pip install sentence_transformers~=2.2.2`
2680
+
2681
+ Contributors: [michaelfeil](https://huggingface.co/michaelfeil)
2682
+
2683
+ ## FAQ
2684
+
2685
+ **1. Do I need to add the prefix "query: " and "passage: " to input texts?**
2686
+
2687
+ Yes, this is how the model is trained, otherwise you will see a performance degradation.
2688
+
2689
+ Here are some rules of thumb:
2690
+ - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval.
2691
+
2692
+ - Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval.
2693
+
2694
+ - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering.
2695
+
2696
+ **2. Why are my reproduced results slightly different from reported in the model card?**
2697
+
2698
+ Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences.
2699
+
2700
+ **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?**
2701
+
2702
+ This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss.
2703
+
2704
+ For text embedding tasks like text retrieval or semantic similarity,
2705
+ what matters is the relative order of the scores instead of the absolute values,
2706
+ so this should not be an issue.
2707
+
2708
+ ## Citation
2709
+
2710
+ If you find our paper or models helpful, please consider cite as follows:
2711
+
2712
+ ```
2713
+ @article{wang2022text,
2714
+ title={Text Embeddings by Weakly-Supervised Contrastive Pre-training},
2715
+ author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu},
2716
+ journal={arXiv preprint arXiv:2212.03533},
2717
+ year={2022}
2718
+ }
2719
+ ```
2720
+
2721
+ ## Limitations
2722
+
2723
+ This model only works for English texts. Long texts will be truncated to at most 512 tokens.
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "tmp/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.29.0.dev0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
handler.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+ from transformers import pipeline
3
+
4
+ import torch.nn.functional as F
5
+ from torch import Tensor
6
+ from transformers import AutoTokenizer, AutoModel
7
+
8
+ def average_pool(last_hidden_states: Tensor,
9
+ attention_mask: Tensor) -> Tensor:
10
+ last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
11
+ return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
12
+
13
+ class EndpointHandler():
14
+ def __init__(self, path=""):
15
+ self.pipeline = pipeline("feature-extraction", model=path)
16
+ self.tokenizer = AutoTokenizer.from_pretrained(path)
17
+ self.model = AutoModel.from_pretrained(path)
18
+
19
+ def __call__(self, data: Dict[str, Any]) -> List[List[int]]:
20
+ inputs = data.pop("inputs",data)
21
+
22
+ batch_dict = self.tokenizer(inputs, max_length=512, padding=True, truncation=True, return_tensors='pt')
23
+
24
+ outputs = self.model(**batch_dict)
25
+
26
+ embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
27
+ embeddings = F.normalize(embeddings, p=2, dim=1).tolist()
28
+
29
+ return embeddings
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d741c1a688a6169af0ecb5a047c44645cd992c31e1bf431269f98bba9ae2911a
3
+ size 1340616616
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43fd21bf73e41d01db17d848aa96e50814456b000bd41909c95f2459ecd4ee4f
3
+ size 1336854281
onnx/model_quantized.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf08540722d90eebcb7552fc7af4ef4ebd133e60823b1af8f5a1d54aee944a97
3
+ size 336983163
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d3fda35853349a026a61027d93bbfd65d7658287a2043f95af3e4397a4e9c5e
3
+ size 1340698349
quantize_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "per_channel": true,
3
+ "reduce_range": true,
4
+ "per_model_config": {
5
+ "model": {
6
+ "op_types": [
7
+ "Erf",
8
+ "Mul",
9
+ "ReduceMean",
10
+ "Unsqueeze",
11
+ "Gather",
12
+ "Div",
13
+ "MatMul",
14
+ "Reshape",
15
+ "Cast",
16
+ "Add",
17
+ "Slice",
18
+ "Shape",
19
+ "Sqrt",
20
+ "Softmax",
21
+ "Pow",
22
+ "Concat",
23
+ "Constant",
24
+ "Sub",
25
+ "Transpose"
26
+ ],
27
+ "weight_type": "QInt8"
28
+ }
29
+ }
30
+ }
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_lower_case": true,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 512,
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "strip_accents": null,
10
+ "tokenize_chinese_chars": true,
11
+ "tokenizer_class": "BertTokenizer",
12
+ "unk_token": "[UNK]"
13
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff