e5-large-v2
Browse files- .gitattributes +0 -1
- 1_Pooling/config.json +7 -0
- README.md +2720 -0
- config.json +25 -0
- handler.py +29 -0
- model.safetensors +3 -0
- modules.json +20 -0
- onnx/model.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
- pytorch_model.bin +3 -0
- quantize_config.json +30 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +13 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
@@ -25,7 +25,6 @@
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,2723 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
- Sentence Transformers
|
5 |
+
- sentence-similarity
|
6 |
+
- sentence-transformers
|
7 |
+
model-index:
|
8 |
+
- name: e5-large-v2
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: Classification
|
12 |
+
dataset:
|
13 |
+
type: mteb/amazon_counterfactual
|
14 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
15 |
+
config: en
|
16 |
+
split: test
|
17 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
18 |
+
metrics:
|
19 |
+
- type: accuracy
|
20 |
+
value: 79.22388059701493
|
21 |
+
- type: ap
|
22 |
+
value: 43.20816505595132
|
23 |
+
- type: f1
|
24 |
+
value: 73.27811303522058
|
25 |
+
- task:
|
26 |
+
type: Classification
|
27 |
+
dataset:
|
28 |
+
type: mteb/amazon_polarity
|
29 |
+
name: MTEB AmazonPolarityClassification
|
30 |
+
config: default
|
31 |
+
split: test
|
32 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
33 |
+
metrics:
|
34 |
+
- type: accuracy
|
35 |
+
value: 93.748325
|
36 |
+
- type: ap
|
37 |
+
value: 90.72534979701297
|
38 |
+
- type: f1
|
39 |
+
value: 93.73895874282185
|
40 |
+
- task:
|
41 |
+
type: Classification
|
42 |
+
dataset:
|
43 |
+
type: mteb/amazon_reviews_multi
|
44 |
+
name: MTEB AmazonReviewsClassification (en)
|
45 |
+
config: en
|
46 |
+
split: test
|
47 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
48 |
+
metrics:
|
49 |
+
- type: accuracy
|
50 |
+
value: 48.612
|
51 |
+
- type: f1
|
52 |
+
value: 47.61157345898393
|
53 |
+
- task:
|
54 |
+
type: Retrieval
|
55 |
+
dataset:
|
56 |
+
type: arguana
|
57 |
+
name: MTEB ArguAna
|
58 |
+
config: default
|
59 |
+
split: test
|
60 |
+
revision: None
|
61 |
+
metrics:
|
62 |
+
- type: map_at_1
|
63 |
+
value: 23.541999999999998
|
64 |
+
- type: map_at_10
|
65 |
+
value: 38.208
|
66 |
+
- type: map_at_100
|
67 |
+
value: 39.417
|
68 |
+
- type: map_at_1000
|
69 |
+
value: 39.428999999999995
|
70 |
+
- type: map_at_3
|
71 |
+
value: 33.95
|
72 |
+
- type: map_at_5
|
73 |
+
value: 36.329
|
74 |
+
- type: mrr_at_1
|
75 |
+
value: 23.755000000000003
|
76 |
+
- type: mrr_at_10
|
77 |
+
value: 38.288
|
78 |
+
- type: mrr_at_100
|
79 |
+
value: 39.511
|
80 |
+
- type: mrr_at_1000
|
81 |
+
value: 39.523
|
82 |
+
- type: mrr_at_3
|
83 |
+
value: 34.009
|
84 |
+
- type: mrr_at_5
|
85 |
+
value: 36.434
|
86 |
+
- type: ndcg_at_1
|
87 |
+
value: 23.541999999999998
|
88 |
+
- type: ndcg_at_10
|
89 |
+
value: 46.417
|
90 |
+
- type: ndcg_at_100
|
91 |
+
value: 51.812000000000005
|
92 |
+
- type: ndcg_at_1000
|
93 |
+
value: 52.137
|
94 |
+
- type: ndcg_at_3
|
95 |
+
value: 37.528
|
96 |
+
- type: ndcg_at_5
|
97 |
+
value: 41.81
|
98 |
+
- type: precision_at_1
|
99 |
+
value: 23.541999999999998
|
100 |
+
- type: precision_at_10
|
101 |
+
value: 7.269
|
102 |
+
- type: precision_at_100
|
103 |
+
value: 0.9690000000000001
|
104 |
+
- type: precision_at_1000
|
105 |
+
value: 0.099
|
106 |
+
- type: precision_at_3
|
107 |
+
value: 15.979
|
108 |
+
- type: precision_at_5
|
109 |
+
value: 11.664
|
110 |
+
- type: recall_at_1
|
111 |
+
value: 23.541999999999998
|
112 |
+
- type: recall_at_10
|
113 |
+
value: 72.688
|
114 |
+
- type: recall_at_100
|
115 |
+
value: 96.871
|
116 |
+
- type: recall_at_1000
|
117 |
+
value: 99.431
|
118 |
+
- type: recall_at_3
|
119 |
+
value: 47.937000000000005
|
120 |
+
- type: recall_at_5
|
121 |
+
value: 58.321
|
122 |
+
- task:
|
123 |
+
type: Clustering
|
124 |
+
dataset:
|
125 |
+
type: mteb/arxiv-clustering-p2p
|
126 |
+
name: MTEB ArxivClusteringP2P
|
127 |
+
config: default
|
128 |
+
split: test
|
129 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
130 |
+
metrics:
|
131 |
+
- type: v_measure
|
132 |
+
value: 45.546499570522094
|
133 |
+
- task:
|
134 |
+
type: Clustering
|
135 |
+
dataset:
|
136 |
+
type: mteb/arxiv-clustering-s2s
|
137 |
+
name: MTEB ArxivClusteringS2S
|
138 |
+
config: default
|
139 |
+
split: test
|
140 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
141 |
+
metrics:
|
142 |
+
- type: v_measure
|
143 |
+
value: 41.01607489943561
|
144 |
+
- task:
|
145 |
+
type: Reranking
|
146 |
+
dataset:
|
147 |
+
type: mteb/askubuntudupquestions-reranking
|
148 |
+
name: MTEB AskUbuntuDupQuestions
|
149 |
+
config: default
|
150 |
+
split: test
|
151 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
152 |
+
metrics:
|
153 |
+
- type: map
|
154 |
+
value: 59.616107510107774
|
155 |
+
- type: mrr
|
156 |
+
value: 72.75106626214661
|
157 |
+
- task:
|
158 |
+
type: STS
|
159 |
+
dataset:
|
160 |
+
type: mteb/biosses-sts
|
161 |
+
name: MTEB BIOSSES
|
162 |
+
config: default
|
163 |
+
split: test
|
164 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
165 |
+
metrics:
|
166 |
+
- type: cos_sim_pearson
|
167 |
+
value: 84.33018094733868
|
168 |
+
- type: cos_sim_spearman
|
169 |
+
value: 83.60190492611737
|
170 |
+
- type: euclidean_pearson
|
171 |
+
value: 82.1492450218961
|
172 |
+
- type: euclidean_spearman
|
173 |
+
value: 82.70308926526991
|
174 |
+
- type: manhattan_pearson
|
175 |
+
value: 81.93959600076842
|
176 |
+
- type: manhattan_spearman
|
177 |
+
value: 82.73260801016369
|
178 |
+
- task:
|
179 |
+
type: Classification
|
180 |
+
dataset:
|
181 |
+
type: mteb/banking77
|
182 |
+
name: MTEB Banking77Classification
|
183 |
+
config: default
|
184 |
+
split: test
|
185 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
186 |
+
metrics:
|
187 |
+
- type: accuracy
|
188 |
+
value: 84.54545454545455
|
189 |
+
- type: f1
|
190 |
+
value: 84.49582530928923
|
191 |
+
- task:
|
192 |
+
type: Clustering
|
193 |
+
dataset:
|
194 |
+
type: mteb/biorxiv-clustering-p2p
|
195 |
+
name: MTEB BiorxivClusteringP2P
|
196 |
+
config: default
|
197 |
+
split: test
|
198 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
199 |
+
metrics:
|
200 |
+
- type: v_measure
|
201 |
+
value: 37.362725540120096
|
202 |
+
- task:
|
203 |
+
type: Clustering
|
204 |
+
dataset:
|
205 |
+
type: mteb/biorxiv-clustering-s2s
|
206 |
+
name: MTEB BiorxivClusteringS2S
|
207 |
+
config: default
|
208 |
+
split: test
|
209 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
210 |
+
metrics:
|
211 |
+
- type: v_measure
|
212 |
+
value: 34.849509608178145
|
213 |
+
- task:
|
214 |
+
type: Retrieval
|
215 |
+
dataset:
|
216 |
+
type: BeIR/cqadupstack
|
217 |
+
name: MTEB CQADupstackAndroidRetrieval
|
218 |
+
config: default
|
219 |
+
split: test
|
220 |
+
revision: None
|
221 |
+
metrics:
|
222 |
+
- type: map_at_1
|
223 |
+
value: 31.502999999999997
|
224 |
+
- type: map_at_10
|
225 |
+
value: 43.323
|
226 |
+
- type: map_at_100
|
227 |
+
value: 44.708999999999996
|
228 |
+
- type: map_at_1000
|
229 |
+
value: 44.838
|
230 |
+
- type: map_at_3
|
231 |
+
value: 38.987
|
232 |
+
- type: map_at_5
|
233 |
+
value: 41.516999999999996
|
234 |
+
- type: mrr_at_1
|
235 |
+
value: 38.769999999999996
|
236 |
+
- type: mrr_at_10
|
237 |
+
value: 49.13
|
238 |
+
- type: mrr_at_100
|
239 |
+
value: 49.697
|
240 |
+
- type: mrr_at_1000
|
241 |
+
value: 49.741
|
242 |
+
- type: mrr_at_3
|
243 |
+
value: 45.804
|
244 |
+
- type: mrr_at_5
|
245 |
+
value: 47.842
|
246 |
+
- type: ndcg_at_1
|
247 |
+
value: 38.769999999999996
|
248 |
+
- type: ndcg_at_10
|
249 |
+
value: 50.266999999999996
|
250 |
+
- type: ndcg_at_100
|
251 |
+
value: 54.967
|
252 |
+
- type: ndcg_at_1000
|
253 |
+
value: 56.976000000000006
|
254 |
+
- type: ndcg_at_3
|
255 |
+
value: 43.823
|
256 |
+
- type: ndcg_at_5
|
257 |
+
value: 47.12
|
258 |
+
- type: precision_at_1
|
259 |
+
value: 38.769999999999996
|
260 |
+
- type: precision_at_10
|
261 |
+
value: 10.057
|
262 |
+
- type: precision_at_100
|
263 |
+
value: 1.554
|
264 |
+
- type: precision_at_1000
|
265 |
+
value: 0.202
|
266 |
+
- type: precision_at_3
|
267 |
+
value: 21.125
|
268 |
+
- type: precision_at_5
|
269 |
+
value: 15.851
|
270 |
+
- type: recall_at_1
|
271 |
+
value: 31.502999999999997
|
272 |
+
- type: recall_at_10
|
273 |
+
value: 63.715999999999994
|
274 |
+
- type: recall_at_100
|
275 |
+
value: 83.61800000000001
|
276 |
+
- type: recall_at_1000
|
277 |
+
value: 96.63199999999999
|
278 |
+
- type: recall_at_3
|
279 |
+
value: 45.403
|
280 |
+
- type: recall_at_5
|
281 |
+
value: 54.481
|
282 |
+
- task:
|
283 |
+
type: Retrieval
|
284 |
+
dataset:
|
285 |
+
type: BeIR/cqadupstack
|
286 |
+
name: MTEB CQADupstackEnglishRetrieval
|
287 |
+
config: default
|
288 |
+
split: test
|
289 |
+
revision: None
|
290 |
+
metrics:
|
291 |
+
- type: map_at_1
|
292 |
+
value: 27.833000000000002
|
293 |
+
- type: map_at_10
|
294 |
+
value: 37.330999999999996
|
295 |
+
- type: map_at_100
|
296 |
+
value: 38.580999999999996
|
297 |
+
- type: map_at_1000
|
298 |
+
value: 38.708
|
299 |
+
- type: map_at_3
|
300 |
+
value: 34.713
|
301 |
+
- type: map_at_5
|
302 |
+
value: 36.104
|
303 |
+
- type: mrr_at_1
|
304 |
+
value: 35.223
|
305 |
+
- type: mrr_at_10
|
306 |
+
value: 43.419000000000004
|
307 |
+
- type: mrr_at_100
|
308 |
+
value: 44.198
|
309 |
+
- type: mrr_at_1000
|
310 |
+
value: 44.249
|
311 |
+
- type: mrr_at_3
|
312 |
+
value: 41.614000000000004
|
313 |
+
- type: mrr_at_5
|
314 |
+
value: 42.553000000000004
|
315 |
+
- type: ndcg_at_1
|
316 |
+
value: 35.223
|
317 |
+
- type: ndcg_at_10
|
318 |
+
value: 42.687999999999995
|
319 |
+
- type: ndcg_at_100
|
320 |
+
value: 47.447
|
321 |
+
- type: ndcg_at_1000
|
322 |
+
value: 49.701
|
323 |
+
- type: ndcg_at_3
|
324 |
+
value: 39.162
|
325 |
+
- type: ndcg_at_5
|
326 |
+
value: 40.557
|
327 |
+
- type: precision_at_1
|
328 |
+
value: 35.223
|
329 |
+
- type: precision_at_10
|
330 |
+
value: 7.962
|
331 |
+
- type: precision_at_100
|
332 |
+
value: 1.304
|
333 |
+
- type: precision_at_1000
|
334 |
+
value: 0.18
|
335 |
+
- type: precision_at_3
|
336 |
+
value: 19.023
|
337 |
+
- type: precision_at_5
|
338 |
+
value: 13.184999999999999
|
339 |
+
- type: recall_at_1
|
340 |
+
value: 27.833000000000002
|
341 |
+
- type: recall_at_10
|
342 |
+
value: 51.881
|
343 |
+
- type: recall_at_100
|
344 |
+
value: 72.04
|
345 |
+
- type: recall_at_1000
|
346 |
+
value: 86.644
|
347 |
+
- type: recall_at_3
|
348 |
+
value: 40.778
|
349 |
+
- type: recall_at_5
|
350 |
+
value: 45.176
|
351 |
+
- task:
|
352 |
+
type: Retrieval
|
353 |
+
dataset:
|
354 |
+
type: BeIR/cqadupstack
|
355 |
+
name: MTEB CQADupstackGamingRetrieval
|
356 |
+
config: default
|
357 |
+
split: test
|
358 |
+
revision: None
|
359 |
+
metrics:
|
360 |
+
- type: map_at_1
|
361 |
+
value: 38.175
|
362 |
+
- type: map_at_10
|
363 |
+
value: 51.174
|
364 |
+
- type: map_at_100
|
365 |
+
value: 52.26499999999999
|
366 |
+
- type: map_at_1000
|
367 |
+
value: 52.315999999999995
|
368 |
+
- type: map_at_3
|
369 |
+
value: 47.897
|
370 |
+
- type: map_at_5
|
371 |
+
value: 49.703
|
372 |
+
- type: mrr_at_1
|
373 |
+
value: 43.448
|
374 |
+
- type: mrr_at_10
|
375 |
+
value: 54.505
|
376 |
+
- type: mrr_at_100
|
377 |
+
value: 55.216
|
378 |
+
- type: mrr_at_1000
|
379 |
+
value: 55.242000000000004
|
380 |
+
- type: mrr_at_3
|
381 |
+
value: 51.98500000000001
|
382 |
+
- type: mrr_at_5
|
383 |
+
value: 53.434000000000005
|
384 |
+
- type: ndcg_at_1
|
385 |
+
value: 43.448
|
386 |
+
- type: ndcg_at_10
|
387 |
+
value: 57.282
|
388 |
+
- type: ndcg_at_100
|
389 |
+
value: 61.537
|
390 |
+
- type: ndcg_at_1000
|
391 |
+
value: 62.546
|
392 |
+
- type: ndcg_at_3
|
393 |
+
value: 51.73799999999999
|
394 |
+
- type: ndcg_at_5
|
395 |
+
value: 54.324
|
396 |
+
- type: precision_at_1
|
397 |
+
value: 43.448
|
398 |
+
- type: precision_at_10
|
399 |
+
value: 9.292
|
400 |
+
- type: precision_at_100
|
401 |
+
value: 1.233
|
402 |
+
- type: precision_at_1000
|
403 |
+
value: 0.136
|
404 |
+
- type: precision_at_3
|
405 |
+
value: 23.218
|
406 |
+
- type: precision_at_5
|
407 |
+
value: 15.887
|
408 |
+
- type: recall_at_1
|
409 |
+
value: 38.175
|
410 |
+
- type: recall_at_10
|
411 |
+
value: 72.00999999999999
|
412 |
+
- type: recall_at_100
|
413 |
+
value: 90.155
|
414 |
+
- type: recall_at_1000
|
415 |
+
value: 97.257
|
416 |
+
- type: recall_at_3
|
417 |
+
value: 57.133
|
418 |
+
- type: recall_at_5
|
419 |
+
value: 63.424
|
420 |
+
- task:
|
421 |
+
type: Retrieval
|
422 |
+
dataset:
|
423 |
+
type: BeIR/cqadupstack
|
424 |
+
name: MTEB CQADupstackGisRetrieval
|
425 |
+
config: default
|
426 |
+
split: test
|
427 |
+
revision: None
|
428 |
+
metrics:
|
429 |
+
- type: map_at_1
|
430 |
+
value: 22.405
|
431 |
+
- type: map_at_10
|
432 |
+
value: 30.043
|
433 |
+
- type: map_at_100
|
434 |
+
value: 31.191000000000003
|
435 |
+
- type: map_at_1000
|
436 |
+
value: 31.275
|
437 |
+
- type: map_at_3
|
438 |
+
value: 27.034000000000002
|
439 |
+
- type: map_at_5
|
440 |
+
value: 28.688000000000002
|
441 |
+
- type: mrr_at_1
|
442 |
+
value: 24.068
|
443 |
+
- type: mrr_at_10
|
444 |
+
value: 31.993
|
445 |
+
- type: mrr_at_100
|
446 |
+
value: 32.992
|
447 |
+
- type: mrr_at_1000
|
448 |
+
value: 33.050000000000004
|
449 |
+
- type: mrr_at_3
|
450 |
+
value: 28.964000000000002
|
451 |
+
- type: mrr_at_5
|
452 |
+
value: 30.653000000000002
|
453 |
+
- type: ndcg_at_1
|
454 |
+
value: 24.068
|
455 |
+
- type: ndcg_at_10
|
456 |
+
value: 35.198
|
457 |
+
- type: ndcg_at_100
|
458 |
+
value: 40.709
|
459 |
+
- type: ndcg_at_1000
|
460 |
+
value: 42.855
|
461 |
+
- type: ndcg_at_3
|
462 |
+
value: 29.139
|
463 |
+
- type: ndcg_at_5
|
464 |
+
value: 32.045
|
465 |
+
- type: precision_at_1
|
466 |
+
value: 24.068
|
467 |
+
- type: precision_at_10
|
468 |
+
value: 5.65
|
469 |
+
- type: precision_at_100
|
470 |
+
value: 0.885
|
471 |
+
- type: precision_at_1000
|
472 |
+
value: 0.11199999999999999
|
473 |
+
- type: precision_at_3
|
474 |
+
value: 12.279
|
475 |
+
- type: precision_at_5
|
476 |
+
value: 8.994
|
477 |
+
- type: recall_at_1
|
478 |
+
value: 22.405
|
479 |
+
- type: recall_at_10
|
480 |
+
value: 49.391
|
481 |
+
- type: recall_at_100
|
482 |
+
value: 74.53699999999999
|
483 |
+
- type: recall_at_1000
|
484 |
+
value: 90.605
|
485 |
+
- type: recall_at_3
|
486 |
+
value: 33.126
|
487 |
+
- type: recall_at_5
|
488 |
+
value: 40.073
|
489 |
+
- task:
|
490 |
+
type: Retrieval
|
491 |
+
dataset:
|
492 |
+
type: BeIR/cqadupstack
|
493 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
494 |
+
config: default
|
495 |
+
split: test
|
496 |
+
revision: None
|
497 |
+
metrics:
|
498 |
+
- type: map_at_1
|
499 |
+
value: 13.309999999999999
|
500 |
+
- type: map_at_10
|
501 |
+
value: 20.688000000000002
|
502 |
+
- type: map_at_100
|
503 |
+
value: 22.022
|
504 |
+
- type: map_at_1000
|
505 |
+
value: 22.152
|
506 |
+
- type: map_at_3
|
507 |
+
value: 17.954
|
508 |
+
- type: map_at_5
|
509 |
+
value: 19.439
|
510 |
+
- type: mrr_at_1
|
511 |
+
value: 16.294
|
512 |
+
- type: mrr_at_10
|
513 |
+
value: 24.479
|
514 |
+
- type: mrr_at_100
|
515 |
+
value: 25.515
|
516 |
+
- type: mrr_at_1000
|
517 |
+
value: 25.593
|
518 |
+
- type: mrr_at_3
|
519 |
+
value: 21.642
|
520 |
+
- type: mrr_at_5
|
521 |
+
value: 23.189999999999998
|
522 |
+
- type: ndcg_at_1
|
523 |
+
value: 16.294
|
524 |
+
- type: ndcg_at_10
|
525 |
+
value: 25.833000000000002
|
526 |
+
- type: ndcg_at_100
|
527 |
+
value: 32.074999999999996
|
528 |
+
- type: ndcg_at_1000
|
529 |
+
value: 35.083
|
530 |
+
- type: ndcg_at_3
|
531 |
+
value: 20.493
|
532 |
+
- type: ndcg_at_5
|
533 |
+
value: 22.949
|
534 |
+
- type: precision_at_1
|
535 |
+
value: 16.294
|
536 |
+
- type: precision_at_10
|
537 |
+
value: 5.112
|
538 |
+
- type: precision_at_100
|
539 |
+
value: 0.96
|
540 |
+
- type: precision_at_1000
|
541 |
+
value: 0.134
|
542 |
+
- type: precision_at_3
|
543 |
+
value: 9.908999999999999
|
544 |
+
- type: precision_at_5
|
545 |
+
value: 7.587000000000001
|
546 |
+
- type: recall_at_1
|
547 |
+
value: 13.309999999999999
|
548 |
+
- type: recall_at_10
|
549 |
+
value: 37.851
|
550 |
+
- type: recall_at_100
|
551 |
+
value: 64.835
|
552 |
+
- type: recall_at_1000
|
553 |
+
value: 86.334
|
554 |
+
- type: recall_at_3
|
555 |
+
value: 23.493
|
556 |
+
- type: recall_at_5
|
557 |
+
value: 29.528
|
558 |
+
- task:
|
559 |
+
type: Retrieval
|
560 |
+
dataset:
|
561 |
+
type: BeIR/cqadupstack
|
562 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
563 |
+
config: default
|
564 |
+
split: test
|
565 |
+
revision: None
|
566 |
+
metrics:
|
567 |
+
- type: map_at_1
|
568 |
+
value: 25.857999999999997
|
569 |
+
- type: map_at_10
|
570 |
+
value: 35.503
|
571 |
+
- type: map_at_100
|
572 |
+
value: 36.957
|
573 |
+
- type: map_at_1000
|
574 |
+
value: 37.065
|
575 |
+
- type: map_at_3
|
576 |
+
value: 32.275999999999996
|
577 |
+
- type: map_at_5
|
578 |
+
value: 34.119
|
579 |
+
- type: mrr_at_1
|
580 |
+
value: 31.954
|
581 |
+
- type: mrr_at_10
|
582 |
+
value: 40.851
|
583 |
+
- type: mrr_at_100
|
584 |
+
value: 41.863
|
585 |
+
- type: mrr_at_1000
|
586 |
+
value: 41.900999999999996
|
587 |
+
- type: mrr_at_3
|
588 |
+
value: 38.129999999999995
|
589 |
+
- type: mrr_at_5
|
590 |
+
value: 39.737
|
591 |
+
- type: ndcg_at_1
|
592 |
+
value: 31.954
|
593 |
+
- type: ndcg_at_10
|
594 |
+
value: 41.343999999999994
|
595 |
+
- type: ndcg_at_100
|
596 |
+
value: 47.397
|
597 |
+
- type: ndcg_at_1000
|
598 |
+
value: 49.501
|
599 |
+
- type: ndcg_at_3
|
600 |
+
value: 36.047000000000004
|
601 |
+
- type: ndcg_at_5
|
602 |
+
value: 38.639
|
603 |
+
- type: precision_at_1
|
604 |
+
value: 31.954
|
605 |
+
- type: precision_at_10
|
606 |
+
value: 7.68
|
607 |
+
- type: precision_at_100
|
608 |
+
value: 1.247
|
609 |
+
- type: precision_at_1000
|
610 |
+
value: 0.16199999999999998
|
611 |
+
- type: precision_at_3
|
612 |
+
value: 17.132
|
613 |
+
- type: precision_at_5
|
614 |
+
value: 12.589
|
615 |
+
- type: recall_at_1
|
616 |
+
value: 25.857999999999997
|
617 |
+
- type: recall_at_10
|
618 |
+
value: 53.43599999999999
|
619 |
+
- type: recall_at_100
|
620 |
+
value: 78.82400000000001
|
621 |
+
- type: recall_at_1000
|
622 |
+
value: 92.78999999999999
|
623 |
+
- type: recall_at_3
|
624 |
+
value: 38.655
|
625 |
+
- type: recall_at_5
|
626 |
+
value: 45.216
|
627 |
+
- task:
|
628 |
+
type: Retrieval
|
629 |
+
dataset:
|
630 |
+
type: BeIR/cqadupstack
|
631 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
632 |
+
config: default
|
633 |
+
split: test
|
634 |
+
revision: None
|
635 |
+
metrics:
|
636 |
+
- type: map_at_1
|
637 |
+
value: 24.709
|
638 |
+
- type: map_at_10
|
639 |
+
value: 34.318
|
640 |
+
- type: map_at_100
|
641 |
+
value: 35.657
|
642 |
+
- type: map_at_1000
|
643 |
+
value: 35.783
|
644 |
+
- type: map_at_3
|
645 |
+
value: 31.326999999999998
|
646 |
+
- type: map_at_5
|
647 |
+
value: 33.021
|
648 |
+
- type: mrr_at_1
|
649 |
+
value: 30.137000000000004
|
650 |
+
- type: mrr_at_10
|
651 |
+
value: 39.093
|
652 |
+
- type: mrr_at_100
|
653 |
+
value: 39.992
|
654 |
+
- type: mrr_at_1000
|
655 |
+
value: 40.056999999999995
|
656 |
+
- type: mrr_at_3
|
657 |
+
value: 36.606
|
658 |
+
- type: mrr_at_5
|
659 |
+
value: 37.861
|
660 |
+
- type: ndcg_at_1
|
661 |
+
value: 30.137000000000004
|
662 |
+
- type: ndcg_at_10
|
663 |
+
value: 39.974
|
664 |
+
- type: ndcg_at_100
|
665 |
+
value: 45.647999999999996
|
666 |
+
- type: ndcg_at_1000
|
667 |
+
value: 48.259
|
668 |
+
- type: ndcg_at_3
|
669 |
+
value: 35.028
|
670 |
+
- type: ndcg_at_5
|
671 |
+
value: 37.175999999999995
|
672 |
+
- type: precision_at_1
|
673 |
+
value: 30.137000000000004
|
674 |
+
- type: precision_at_10
|
675 |
+
value: 7.363
|
676 |
+
- type: precision_at_100
|
677 |
+
value: 1.184
|
678 |
+
- type: precision_at_1000
|
679 |
+
value: 0.161
|
680 |
+
- type: precision_at_3
|
681 |
+
value: 16.857
|
682 |
+
- type: precision_at_5
|
683 |
+
value: 11.963
|
684 |
+
- type: recall_at_1
|
685 |
+
value: 24.709
|
686 |
+
- type: recall_at_10
|
687 |
+
value: 52.087
|
688 |
+
- type: recall_at_100
|
689 |
+
value: 76.125
|
690 |
+
- type: recall_at_1000
|
691 |
+
value: 93.82300000000001
|
692 |
+
- type: recall_at_3
|
693 |
+
value: 38.149
|
694 |
+
- type: recall_at_5
|
695 |
+
value: 43.984
|
696 |
+
- task:
|
697 |
+
type: Retrieval
|
698 |
+
dataset:
|
699 |
+
type: BeIR/cqadupstack
|
700 |
+
name: MTEB CQADupstackRetrieval
|
701 |
+
config: default
|
702 |
+
split: test
|
703 |
+
revision: None
|
704 |
+
metrics:
|
705 |
+
- type: map_at_1
|
706 |
+
value: 23.40791666666667
|
707 |
+
- type: map_at_10
|
708 |
+
value: 32.458083333333335
|
709 |
+
- type: map_at_100
|
710 |
+
value: 33.691916666666664
|
711 |
+
- type: map_at_1000
|
712 |
+
value: 33.81191666666666
|
713 |
+
- type: map_at_3
|
714 |
+
value: 29.51625
|
715 |
+
- type: map_at_5
|
716 |
+
value: 31.168083333333335
|
717 |
+
- type: mrr_at_1
|
718 |
+
value: 27.96591666666666
|
719 |
+
- type: mrr_at_10
|
720 |
+
value: 36.528583333333344
|
721 |
+
- type: mrr_at_100
|
722 |
+
value: 37.404
|
723 |
+
- type: mrr_at_1000
|
724 |
+
value: 37.464333333333336
|
725 |
+
- type: mrr_at_3
|
726 |
+
value: 33.92883333333333
|
727 |
+
- type: mrr_at_5
|
728 |
+
value: 35.41933333333333
|
729 |
+
- type: ndcg_at_1
|
730 |
+
value: 27.96591666666666
|
731 |
+
- type: ndcg_at_10
|
732 |
+
value: 37.89141666666666
|
733 |
+
- type: ndcg_at_100
|
734 |
+
value: 43.23066666666666
|
735 |
+
- type: ndcg_at_1000
|
736 |
+
value: 45.63258333333333
|
737 |
+
- type: ndcg_at_3
|
738 |
+
value: 32.811249999999994
|
739 |
+
- type: ndcg_at_5
|
740 |
+
value: 35.22566666666667
|
741 |
+
- type: precision_at_1
|
742 |
+
value: 27.96591666666666
|
743 |
+
- type: precision_at_10
|
744 |
+
value: 6.834083333333332
|
745 |
+
- type: precision_at_100
|
746 |
+
value: 1.12225
|
747 |
+
- type: precision_at_1000
|
748 |
+
value: 0.15241666666666667
|
749 |
+
- type: precision_at_3
|
750 |
+
value: 15.264333333333335
|
751 |
+
- type: precision_at_5
|
752 |
+
value: 11.039416666666666
|
753 |
+
- type: recall_at_1
|
754 |
+
value: 23.40791666666667
|
755 |
+
- type: recall_at_10
|
756 |
+
value: 49.927083333333336
|
757 |
+
- type: recall_at_100
|
758 |
+
value: 73.44641666666668
|
759 |
+
- type: recall_at_1000
|
760 |
+
value: 90.19950000000001
|
761 |
+
- type: recall_at_3
|
762 |
+
value: 35.88341666666667
|
763 |
+
- type: recall_at_5
|
764 |
+
value: 42.061249999999994
|
765 |
+
- task:
|
766 |
+
type: Retrieval
|
767 |
+
dataset:
|
768 |
+
type: BeIR/cqadupstack
|
769 |
+
name: MTEB CQADupstackStatsRetrieval
|
770 |
+
config: default
|
771 |
+
split: test
|
772 |
+
revision: None
|
773 |
+
metrics:
|
774 |
+
- type: map_at_1
|
775 |
+
value: 19.592000000000002
|
776 |
+
- type: map_at_10
|
777 |
+
value: 26.895999999999997
|
778 |
+
- type: map_at_100
|
779 |
+
value: 27.921000000000003
|
780 |
+
- type: map_at_1000
|
781 |
+
value: 28.02
|
782 |
+
- type: map_at_3
|
783 |
+
value: 24.883
|
784 |
+
- type: map_at_5
|
785 |
+
value: 25.812
|
786 |
+
- type: mrr_at_1
|
787 |
+
value: 22.698999999999998
|
788 |
+
- type: mrr_at_10
|
789 |
+
value: 29.520999999999997
|
790 |
+
- type: mrr_at_100
|
791 |
+
value: 30.458000000000002
|
792 |
+
- type: mrr_at_1000
|
793 |
+
value: 30.526999999999997
|
794 |
+
- type: mrr_at_3
|
795 |
+
value: 27.633000000000003
|
796 |
+
- type: mrr_at_5
|
797 |
+
value: 28.483999999999998
|
798 |
+
- type: ndcg_at_1
|
799 |
+
value: 22.698999999999998
|
800 |
+
- type: ndcg_at_10
|
801 |
+
value: 31.061
|
802 |
+
- type: ndcg_at_100
|
803 |
+
value: 36.398
|
804 |
+
- type: ndcg_at_1000
|
805 |
+
value: 38.89
|
806 |
+
- type: ndcg_at_3
|
807 |
+
value: 27.149
|
808 |
+
- type: ndcg_at_5
|
809 |
+
value: 28.627000000000002
|
810 |
+
- type: precision_at_1
|
811 |
+
value: 22.698999999999998
|
812 |
+
- type: precision_at_10
|
813 |
+
value: 5.106999999999999
|
814 |
+
- type: precision_at_100
|
815 |
+
value: 0.857
|
816 |
+
- type: precision_at_1000
|
817 |
+
value: 0.11499999999999999
|
818 |
+
- type: precision_at_3
|
819 |
+
value: 11.963
|
820 |
+
- type: precision_at_5
|
821 |
+
value: 8.221
|
822 |
+
- type: recall_at_1
|
823 |
+
value: 19.592000000000002
|
824 |
+
- type: recall_at_10
|
825 |
+
value: 41.329
|
826 |
+
- type: recall_at_100
|
827 |
+
value: 66.094
|
828 |
+
- type: recall_at_1000
|
829 |
+
value: 84.511
|
830 |
+
- type: recall_at_3
|
831 |
+
value: 30.61
|
832 |
+
- type: recall_at_5
|
833 |
+
value: 34.213
|
834 |
+
- task:
|
835 |
+
type: Retrieval
|
836 |
+
dataset:
|
837 |
+
type: BeIR/cqadupstack
|
838 |
+
name: MTEB CQADupstackTexRetrieval
|
839 |
+
config: default
|
840 |
+
split: test
|
841 |
+
revision: None
|
842 |
+
metrics:
|
843 |
+
- type: map_at_1
|
844 |
+
value: 14.71
|
845 |
+
- type: map_at_10
|
846 |
+
value: 20.965
|
847 |
+
- type: map_at_100
|
848 |
+
value: 21.994
|
849 |
+
- type: map_at_1000
|
850 |
+
value: 22.133
|
851 |
+
- type: map_at_3
|
852 |
+
value: 18.741
|
853 |
+
- type: map_at_5
|
854 |
+
value: 19.951
|
855 |
+
- type: mrr_at_1
|
856 |
+
value: 18.307000000000002
|
857 |
+
- type: mrr_at_10
|
858 |
+
value: 24.66
|
859 |
+
- type: mrr_at_100
|
860 |
+
value: 25.540000000000003
|
861 |
+
- type: mrr_at_1000
|
862 |
+
value: 25.629
|
863 |
+
- type: mrr_at_3
|
864 |
+
value: 22.511
|
865 |
+
- type: mrr_at_5
|
866 |
+
value: 23.72
|
867 |
+
- type: ndcg_at_1
|
868 |
+
value: 18.307000000000002
|
869 |
+
- type: ndcg_at_10
|
870 |
+
value: 25.153
|
871 |
+
- type: ndcg_at_100
|
872 |
+
value: 30.229
|
873 |
+
- type: ndcg_at_1000
|
874 |
+
value: 33.623
|
875 |
+
- type: ndcg_at_3
|
876 |
+
value: 21.203
|
877 |
+
- type: ndcg_at_5
|
878 |
+
value: 23.006999999999998
|
879 |
+
- type: precision_at_1
|
880 |
+
value: 18.307000000000002
|
881 |
+
- type: precision_at_10
|
882 |
+
value: 4.725
|
883 |
+
- type: precision_at_100
|
884 |
+
value: 0.8659999999999999
|
885 |
+
- type: precision_at_1000
|
886 |
+
value: 0.133
|
887 |
+
- type: precision_at_3
|
888 |
+
value: 10.14
|
889 |
+
- type: precision_at_5
|
890 |
+
value: 7.481
|
891 |
+
- type: recall_at_1
|
892 |
+
value: 14.71
|
893 |
+
- type: recall_at_10
|
894 |
+
value: 34.087
|
895 |
+
- type: recall_at_100
|
896 |
+
value: 57.147999999999996
|
897 |
+
- type: recall_at_1000
|
898 |
+
value: 81.777
|
899 |
+
- type: recall_at_3
|
900 |
+
value: 22.996
|
901 |
+
- type: recall_at_5
|
902 |
+
value: 27.73
|
903 |
+
- task:
|
904 |
+
type: Retrieval
|
905 |
+
dataset:
|
906 |
+
type: BeIR/cqadupstack
|
907 |
+
name: MTEB CQADupstackUnixRetrieval
|
908 |
+
config: default
|
909 |
+
split: test
|
910 |
+
revision: None
|
911 |
+
metrics:
|
912 |
+
- type: map_at_1
|
913 |
+
value: 23.472
|
914 |
+
- type: map_at_10
|
915 |
+
value: 32.699
|
916 |
+
- type: map_at_100
|
917 |
+
value: 33.867000000000004
|
918 |
+
- type: map_at_1000
|
919 |
+
value: 33.967000000000006
|
920 |
+
- type: map_at_3
|
921 |
+
value: 29.718
|
922 |
+
- type: map_at_5
|
923 |
+
value: 31.345
|
924 |
+
- type: mrr_at_1
|
925 |
+
value: 28.265
|
926 |
+
- type: mrr_at_10
|
927 |
+
value: 36.945
|
928 |
+
- type: mrr_at_100
|
929 |
+
value: 37.794
|
930 |
+
- type: mrr_at_1000
|
931 |
+
value: 37.857
|
932 |
+
- type: mrr_at_3
|
933 |
+
value: 34.266000000000005
|
934 |
+
- type: mrr_at_5
|
935 |
+
value: 35.768
|
936 |
+
- type: ndcg_at_1
|
937 |
+
value: 28.265
|
938 |
+
- type: ndcg_at_10
|
939 |
+
value: 38.35
|
940 |
+
- type: ndcg_at_100
|
941 |
+
value: 43.739
|
942 |
+
- type: ndcg_at_1000
|
943 |
+
value: 46.087
|
944 |
+
- type: ndcg_at_3
|
945 |
+
value: 33.004
|
946 |
+
- type: ndcg_at_5
|
947 |
+
value: 35.411
|
948 |
+
- type: precision_at_1
|
949 |
+
value: 28.265
|
950 |
+
- type: precision_at_10
|
951 |
+
value: 6.715999999999999
|
952 |
+
- type: precision_at_100
|
953 |
+
value: 1.059
|
954 |
+
- type: precision_at_1000
|
955 |
+
value: 0.13799999999999998
|
956 |
+
- type: precision_at_3
|
957 |
+
value: 15.299
|
958 |
+
- type: precision_at_5
|
959 |
+
value: 10.951
|
960 |
+
- type: recall_at_1
|
961 |
+
value: 23.472
|
962 |
+
- type: recall_at_10
|
963 |
+
value: 51.413
|
964 |
+
- type: recall_at_100
|
965 |
+
value: 75.17
|
966 |
+
- type: recall_at_1000
|
967 |
+
value: 91.577
|
968 |
+
- type: recall_at_3
|
969 |
+
value: 36.651
|
970 |
+
- type: recall_at_5
|
971 |
+
value: 42.814
|
972 |
+
- task:
|
973 |
+
type: Retrieval
|
974 |
+
dataset:
|
975 |
+
type: BeIR/cqadupstack
|
976 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
977 |
+
config: default
|
978 |
+
split: test
|
979 |
+
revision: None
|
980 |
+
metrics:
|
981 |
+
- type: map_at_1
|
982 |
+
value: 23.666
|
983 |
+
- type: map_at_10
|
984 |
+
value: 32.963
|
985 |
+
- type: map_at_100
|
986 |
+
value: 34.544999999999995
|
987 |
+
- type: map_at_1000
|
988 |
+
value: 34.792
|
989 |
+
- type: map_at_3
|
990 |
+
value: 29.74
|
991 |
+
- type: map_at_5
|
992 |
+
value: 31.5
|
993 |
+
- type: mrr_at_1
|
994 |
+
value: 29.051
|
995 |
+
- type: mrr_at_10
|
996 |
+
value: 38.013000000000005
|
997 |
+
- type: mrr_at_100
|
998 |
+
value: 38.997
|
999 |
+
- type: mrr_at_1000
|
1000 |
+
value: 39.055
|
1001 |
+
- type: mrr_at_3
|
1002 |
+
value: 34.947
|
1003 |
+
- type: mrr_at_5
|
1004 |
+
value: 36.815
|
1005 |
+
- type: ndcg_at_1
|
1006 |
+
value: 29.051
|
1007 |
+
- type: ndcg_at_10
|
1008 |
+
value: 39.361000000000004
|
1009 |
+
- type: ndcg_at_100
|
1010 |
+
value: 45.186
|
1011 |
+
- type: ndcg_at_1000
|
1012 |
+
value: 47.867
|
1013 |
+
- type: ndcg_at_3
|
1014 |
+
value: 33.797
|
1015 |
+
- type: ndcg_at_5
|
1016 |
+
value: 36.456
|
1017 |
+
- type: precision_at_1
|
1018 |
+
value: 29.051
|
1019 |
+
- type: precision_at_10
|
1020 |
+
value: 7.668
|
1021 |
+
- type: precision_at_100
|
1022 |
+
value: 1.532
|
1023 |
+
- type: precision_at_1000
|
1024 |
+
value: 0.247
|
1025 |
+
- type: precision_at_3
|
1026 |
+
value: 15.876000000000001
|
1027 |
+
- type: precision_at_5
|
1028 |
+
value: 11.779
|
1029 |
+
- type: recall_at_1
|
1030 |
+
value: 23.666
|
1031 |
+
- type: recall_at_10
|
1032 |
+
value: 51.858000000000004
|
1033 |
+
- type: recall_at_100
|
1034 |
+
value: 77.805
|
1035 |
+
- type: recall_at_1000
|
1036 |
+
value: 94.504
|
1037 |
+
- type: recall_at_3
|
1038 |
+
value: 36.207
|
1039 |
+
- type: recall_at_5
|
1040 |
+
value: 43.094
|
1041 |
+
- task:
|
1042 |
+
type: Retrieval
|
1043 |
+
dataset:
|
1044 |
+
type: BeIR/cqadupstack
|
1045 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1046 |
+
config: default
|
1047 |
+
split: test
|
1048 |
+
revision: None
|
1049 |
+
metrics:
|
1050 |
+
- type: map_at_1
|
1051 |
+
value: 15.662
|
1052 |
+
- type: map_at_10
|
1053 |
+
value: 23.594
|
1054 |
+
- type: map_at_100
|
1055 |
+
value: 24.593999999999998
|
1056 |
+
- type: map_at_1000
|
1057 |
+
value: 24.694
|
1058 |
+
- type: map_at_3
|
1059 |
+
value: 20.925
|
1060 |
+
- type: map_at_5
|
1061 |
+
value: 22.817999999999998
|
1062 |
+
- type: mrr_at_1
|
1063 |
+
value: 17.375
|
1064 |
+
- type: mrr_at_10
|
1065 |
+
value: 25.734
|
1066 |
+
- type: mrr_at_100
|
1067 |
+
value: 26.586
|
1068 |
+
- type: mrr_at_1000
|
1069 |
+
value: 26.671
|
1070 |
+
- type: mrr_at_3
|
1071 |
+
value: 23.044
|
1072 |
+
- type: mrr_at_5
|
1073 |
+
value: 24.975
|
1074 |
+
- type: ndcg_at_1
|
1075 |
+
value: 17.375
|
1076 |
+
- type: ndcg_at_10
|
1077 |
+
value: 28.186
|
1078 |
+
- type: ndcg_at_100
|
1079 |
+
value: 33.436
|
1080 |
+
- type: ndcg_at_1000
|
1081 |
+
value: 36.203
|
1082 |
+
- type: ndcg_at_3
|
1083 |
+
value: 23.152
|
1084 |
+
- type: ndcg_at_5
|
1085 |
+
value: 26.397
|
1086 |
+
- type: precision_at_1
|
1087 |
+
value: 17.375
|
1088 |
+
- type: precision_at_10
|
1089 |
+
value: 4.677
|
1090 |
+
- type: precision_at_100
|
1091 |
+
value: 0.786
|
1092 |
+
- type: precision_at_1000
|
1093 |
+
value: 0.109
|
1094 |
+
- type: precision_at_3
|
1095 |
+
value: 10.351
|
1096 |
+
- type: precision_at_5
|
1097 |
+
value: 7.985
|
1098 |
+
- type: recall_at_1
|
1099 |
+
value: 15.662
|
1100 |
+
- type: recall_at_10
|
1101 |
+
value: 40.066
|
1102 |
+
- type: recall_at_100
|
1103 |
+
value: 65.006
|
1104 |
+
- type: recall_at_1000
|
1105 |
+
value: 85.94000000000001
|
1106 |
+
- type: recall_at_3
|
1107 |
+
value: 27.400000000000002
|
1108 |
+
- type: recall_at_5
|
1109 |
+
value: 35.002
|
1110 |
+
- task:
|
1111 |
+
type: Retrieval
|
1112 |
+
dataset:
|
1113 |
+
type: climate-fever
|
1114 |
+
name: MTEB ClimateFEVER
|
1115 |
+
config: default
|
1116 |
+
split: test
|
1117 |
+
revision: None
|
1118 |
+
metrics:
|
1119 |
+
- type: map_at_1
|
1120 |
+
value: 8.853
|
1121 |
+
- type: map_at_10
|
1122 |
+
value: 15.568000000000001
|
1123 |
+
- type: map_at_100
|
1124 |
+
value: 17.383000000000003
|
1125 |
+
- type: map_at_1000
|
1126 |
+
value: 17.584
|
1127 |
+
- type: map_at_3
|
1128 |
+
value: 12.561
|
1129 |
+
- type: map_at_5
|
1130 |
+
value: 14.056
|
1131 |
+
- type: mrr_at_1
|
1132 |
+
value: 18.958
|
1133 |
+
- type: mrr_at_10
|
1134 |
+
value: 28.288000000000004
|
1135 |
+
- type: mrr_at_100
|
1136 |
+
value: 29.432000000000002
|
1137 |
+
- type: mrr_at_1000
|
1138 |
+
value: 29.498
|
1139 |
+
- type: mrr_at_3
|
1140 |
+
value: 25.049
|
1141 |
+
- type: mrr_at_5
|
1142 |
+
value: 26.857
|
1143 |
+
- type: ndcg_at_1
|
1144 |
+
value: 18.958
|
1145 |
+
- type: ndcg_at_10
|
1146 |
+
value: 22.21
|
1147 |
+
- type: ndcg_at_100
|
1148 |
+
value: 29.596
|
1149 |
+
- type: ndcg_at_1000
|
1150 |
+
value: 33.583
|
1151 |
+
- type: ndcg_at_3
|
1152 |
+
value: 16.994999999999997
|
1153 |
+
- type: ndcg_at_5
|
1154 |
+
value: 18.95
|
1155 |
+
- type: precision_at_1
|
1156 |
+
value: 18.958
|
1157 |
+
- type: precision_at_10
|
1158 |
+
value: 7.192
|
1159 |
+
- type: precision_at_100
|
1160 |
+
value: 1.5
|
1161 |
+
- type: precision_at_1000
|
1162 |
+
value: 0.22399999999999998
|
1163 |
+
- type: precision_at_3
|
1164 |
+
value: 12.573
|
1165 |
+
- type: precision_at_5
|
1166 |
+
value: 10.202
|
1167 |
+
- type: recall_at_1
|
1168 |
+
value: 8.853
|
1169 |
+
- type: recall_at_10
|
1170 |
+
value: 28.087
|
1171 |
+
- type: recall_at_100
|
1172 |
+
value: 53.701
|
1173 |
+
- type: recall_at_1000
|
1174 |
+
value: 76.29899999999999
|
1175 |
+
- type: recall_at_3
|
1176 |
+
value: 15.913
|
1177 |
+
- type: recall_at_5
|
1178 |
+
value: 20.658
|
1179 |
+
- task:
|
1180 |
+
type: Retrieval
|
1181 |
+
dataset:
|
1182 |
+
type: dbpedia-entity
|
1183 |
+
name: MTEB DBPedia
|
1184 |
+
config: default
|
1185 |
+
split: test
|
1186 |
+
revision: None
|
1187 |
+
metrics:
|
1188 |
+
- type: map_at_1
|
1189 |
+
value: 9.077
|
1190 |
+
- type: map_at_10
|
1191 |
+
value: 20.788999999999998
|
1192 |
+
- type: map_at_100
|
1193 |
+
value: 30.429000000000002
|
1194 |
+
- type: map_at_1000
|
1195 |
+
value: 32.143
|
1196 |
+
- type: map_at_3
|
1197 |
+
value: 14.692
|
1198 |
+
- type: map_at_5
|
1199 |
+
value: 17.139
|
1200 |
+
- type: mrr_at_1
|
1201 |
+
value: 70.75
|
1202 |
+
- type: mrr_at_10
|
1203 |
+
value: 78.036
|
1204 |
+
- type: mrr_at_100
|
1205 |
+
value: 78.401
|
1206 |
+
- type: mrr_at_1000
|
1207 |
+
value: 78.404
|
1208 |
+
- type: mrr_at_3
|
1209 |
+
value: 76.75
|
1210 |
+
- type: mrr_at_5
|
1211 |
+
value: 77.47500000000001
|
1212 |
+
- type: ndcg_at_1
|
1213 |
+
value: 58.12500000000001
|
1214 |
+
- type: ndcg_at_10
|
1215 |
+
value: 44.015
|
1216 |
+
- type: ndcg_at_100
|
1217 |
+
value: 49.247
|
1218 |
+
- type: ndcg_at_1000
|
1219 |
+
value: 56.211999999999996
|
1220 |
+
- type: ndcg_at_3
|
1221 |
+
value: 49.151
|
1222 |
+
- type: ndcg_at_5
|
1223 |
+
value: 46.195
|
1224 |
+
- type: precision_at_1
|
1225 |
+
value: 70.75
|
1226 |
+
- type: precision_at_10
|
1227 |
+
value: 35.5
|
1228 |
+
- type: precision_at_100
|
1229 |
+
value: 11.355
|
1230 |
+
- type: precision_at_1000
|
1231 |
+
value: 2.1950000000000003
|
1232 |
+
- type: precision_at_3
|
1233 |
+
value: 53.083000000000006
|
1234 |
+
- type: precision_at_5
|
1235 |
+
value: 44.800000000000004
|
1236 |
+
- type: recall_at_1
|
1237 |
+
value: 9.077
|
1238 |
+
- type: recall_at_10
|
1239 |
+
value: 26.259
|
1240 |
+
- type: recall_at_100
|
1241 |
+
value: 56.547000000000004
|
1242 |
+
- type: recall_at_1000
|
1243 |
+
value: 78.551
|
1244 |
+
- type: recall_at_3
|
1245 |
+
value: 16.162000000000003
|
1246 |
+
- type: recall_at_5
|
1247 |
+
value: 19.753999999999998
|
1248 |
+
- task:
|
1249 |
+
type: Classification
|
1250 |
+
dataset:
|
1251 |
+
type: mteb/emotion
|
1252 |
+
name: MTEB EmotionClassification
|
1253 |
+
config: default
|
1254 |
+
split: test
|
1255 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1256 |
+
metrics:
|
1257 |
+
- type: accuracy
|
1258 |
+
value: 49.44500000000001
|
1259 |
+
- type: f1
|
1260 |
+
value: 44.67067691783401
|
1261 |
+
- task:
|
1262 |
+
type: Retrieval
|
1263 |
+
dataset:
|
1264 |
+
type: fever
|
1265 |
+
name: MTEB FEVER
|
1266 |
+
config: default
|
1267 |
+
split: test
|
1268 |
+
revision: None
|
1269 |
+
metrics:
|
1270 |
+
- type: map_at_1
|
1271 |
+
value: 68.182
|
1272 |
+
- type: map_at_10
|
1273 |
+
value: 78.223
|
1274 |
+
- type: map_at_100
|
1275 |
+
value: 78.498
|
1276 |
+
- type: map_at_1000
|
1277 |
+
value: 78.512
|
1278 |
+
- type: map_at_3
|
1279 |
+
value: 76.71
|
1280 |
+
- type: map_at_5
|
1281 |
+
value: 77.725
|
1282 |
+
- type: mrr_at_1
|
1283 |
+
value: 73.177
|
1284 |
+
- type: mrr_at_10
|
1285 |
+
value: 82.513
|
1286 |
+
- type: mrr_at_100
|
1287 |
+
value: 82.633
|
1288 |
+
- type: mrr_at_1000
|
1289 |
+
value: 82.635
|
1290 |
+
- type: mrr_at_3
|
1291 |
+
value: 81.376
|
1292 |
+
- type: mrr_at_5
|
1293 |
+
value: 82.182
|
1294 |
+
- type: ndcg_at_1
|
1295 |
+
value: 73.177
|
1296 |
+
- type: ndcg_at_10
|
1297 |
+
value: 82.829
|
1298 |
+
- type: ndcg_at_100
|
1299 |
+
value: 83.84
|
1300 |
+
- type: ndcg_at_1000
|
1301 |
+
value: 84.07900000000001
|
1302 |
+
- type: ndcg_at_3
|
1303 |
+
value: 80.303
|
1304 |
+
- type: ndcg_at_5
|
1305 |
+
value: 81.846
|
1306 |
+
- type: precision_at_1
|
1307 |
+
value: 73.177
|
1308 |
+
- type: precision_at_10
|
1309 |
+
value: 10.241999999999999
|
1310 |
+
- type: precision_at_100
|
1311 |
+
value: 1.099
|
1312 |
+
- type: precision_at_1000
|
1313 |
+
value: 0.11399999999999999
|
1314 |
+
- type: precision_at_3
|
1315 |
+
value: 31.247999999999998
|
1316 |
+
- type: precision_at_5
|
1317 |
+
value: 19.697
|
1318 |
+
- type: recall_at_1
|
1319 |
+
value: 68.182
|
1320 |
+
- type: recall_at_10
|
1321 |
+
value: 92.657
|
1322 |
+
- type: recall_at_100
|
1323 |
+
value: 96.709
|
1324 |
+
- type: recall_at_1000
|
1325 |
+
value: 98.184
|
1326 |
+
- type: recall_at_3
|
1327 |
+
value: 85.9
|
1328 |
+
- type: recall_at_5
|
1329 |
+
value: 89.755
|
1330 |
+
- task:
|
1331 |
+
type: Retrieval
|
1332 |
+
dataset:
|
1333 |
+
type: fiqa
|
1334 |
+
name: MTEB FiQA2018
|
1335 |
+
config: default
|
1336 |
+
split: test
|
1337 |
+
revision: None
|
1338 |
+
metrics:
|
1339 |
+
- type: map_at_1
|
1340 |
+
value: 21.108
|
1341 |
+
- type: map_at_10
|
1342 |
+
value: 33.342
|
1343 |
+
- type: map_at_100
|
1344 |
+
value: 35.281
|
1345 |
+
- type: map_at_1000
|
1346 |
+
value: 35.478
|
1347 |
+
- type: map_at_3
|
1348 |
+
value: 29.067
|
1349 |
+
- type: map_at_5
|
1350 |
+
value: 31.563000000000002
|
1351 |
+
- type: mrr_at_1
|
1352 |
+
value: 41.667
|
1353 |
+
- type: mrr_at_10
|
1354 |
+
value: 49.913000000000004
|
1355 |
+
- type: mrr_at_100
|
1356 |
+
value: 50.724000000000004
|
1357 |
+
- type: mrr_at_1000
|
1358 |
+
value: 50.766
|
1359 |
+
- type: mrr_at_3
|
1360 |
+
value: 47.504999999999995
|
1361 |
+
- type: mrr_at_5
|
1362 |
+
value: 49.033
|
1363 |
+
- type: ndcg_at_1
|
1364 |
+
value: 41.667
|
1365 |
+
- type: ndcg_at_10
|
1366 |
+
value: 41.144
|
1367 |
+
- type: ndcg_at_100
|
1368 |
+
value: 48.326
|
1369 |
+
- type: ndcg_at_1000
|
1370 |
+
value: 51.486
|
1371 |
+
- type: ndcg_at_3
|
1372 |
+
value: 37.486999999999995
|
1373 |
+
- type: ndcg_at_5
|
1374 |
+
value: 38.78
|
1375 |
+
- type: precision_at_1
|
1376 |
+
value: 41.667
|
1377 |
+
- type: precision_at_10
|
1378 |
+
value: 11.358
|
1379 |
+
- type: precision_at_100
|
1380 |
+
value: 1.873
|
1381 |
+
- type: precision_at_1000
|
1382 |
+
value: 0.244
|
1383 |
+
- type: precision_at_3
|
1384 |
+
value: 25
|
1385 |
+
- type: precision_at_5
|
1386 |
+
value: 18.519
|
1387 |
+
- type: recall_at_1
|
1388 |
+
value: 21.108
|
1389 |
+
- type: recall_at_10
|
1390 |
+
value: 47.249
|
1391 |
+
- type: recall_at_100
|
1392 |
+
value: 74.52
|
1393 |
+
- type: recall_at_1000
|
1394 |
+
value: 93.31
|
1395 |
+
- type: recall_at_3
|
1396 |
+
value: 33.271
|
1397 |
+
- type: recall_at_5
|
1398 |
+
value: 39.723000000000006
|
1399 |
+
- task:
|
1400 |
+
type: Retrieval
|
1401 |
+
dataset:
|
1402 |
+
type: hotpotqa
|
1403 |
+
name: MTEB HotpotQA
|
1404 |
+
config: default
|
1405 |
+
split: test
|
1406 |
+
revision: None
|
1407 |
+
metrics:
|
1408 |
+
- type: map_at_1
|
1409 |
+
value: 40.317
|
1410 |
+
- type: map_at_10
|
1411 |
+
value: 64.861
|
1412 |
+
- type: map_at_100
|
1413 |
+
value: 65.697
|
1414 |
+
- type: map_at_1000
|
1415 |
+
value: 65.755
|
1416 |
+
- type: map_at_3
|
1417 |
+
value: 61.258
|
1418 |
+
- type: map_at_5
|
1419 |
+
value: 63.590999999999994
|
1420 |
+
- type: mrr_at_1
|
1421 |
+
value: 80.635
|
1422 |
+
- type: mrr_at_10
|
1423 |
+
value: 86.528
|
1424 |
+
- type: mrr_at_100
|
1425 |
+
value: 86.66199999999999
|
1426 |
+
- type: mrr_at_1000
|
1427 |
+
value: 86.666
|
1428 |
+
- type: mrr_at_3
|
1429 |
+
value: 85.744
|
1430 |
+
- type: mrr_at_5
|
1431 |
+
value: 86.24300000000001
|
1432 |
+
- type: ndcg_at_1
|
1433 |
+
value: 80.635
|
1434 |
+
- type: ndcg_at_10
|
1435 |
+
value: 73.13199999999999
|
1436 |
+
- type: ndcg_at_100
|
1437 |
+
value: 75.927
|
1438 |
+
- type: ndcg_at_1000
|
1439 |
+
value: 76.976
|
1440 |
+
- type: ndcg_at_3
|
1441 |
+
value: 68.241
|
1442 |
+
- type: ndcg_at_5
|
1443 |
+
value: 71.071
|
1444 |
+
- type: precision_at_1
|
1445 |
+
value: 80.635
|
1446 |
+
- type: precision_at_10
|
1447 |
+
value: 15.326
|
1448 |
+
- type: precision_at_100
|
1449 |
+
value: 1.7500000000000002
|
1450 |
+
- type: precision_at_1000
|
1451 |
+
value: 0.189
|
1452 |
+
- type: precision_at_3
|
1453 |
+
value: 43.961
|
1454 |
+
- type: precision_at_5
|
1455 |
+
value: 28.599999999999998
|
1456 |
+
- type: recall_at_1
|
1457 |
+
value: 40.317
|
1458 |
+
- type: recall_at_10
|
1459 |
+
value: 76.631
|
1460 |
+
- type: recall_at_100
|
1461 |
+
value: 87.495
|
1462 |
+
- type: recall_at_1000
|
1463 |
+
value: 94.362
|
1464 |
+
- type: recall_at_3
|
1465 |
+
value: 65.94200000000001
|
1466 |
+
- type: recall_at_5
|
1467 |
+
value: 71.499
|
1468 |
+
- task:
|
1469 |
+
type: Classification
|
1470 |
+
dataset:
|
1471 |
+
type: mteb/imdb
|
1472 |
+
name: MTEB ImdbClassification
|
1473 |
+
config: default
|
1474 |
+
split: test
|
1475 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1476 |
+
metrics:
|
1477 |
+
- type: accuracy
|
1478 |
+
value: 91.686
|
1479 |
+
- type: ap
|
1480 |
+
value: 87.5577120393173
|
1481 |
+
- type: f1
|
1482 |
+
value: 91.6629447355139
|
1483 |
+
- task:
|
1484 |
+
type: Retrieval
|
1485 |
+
dataset:
|
1486 |
+
type: msmarco
|
1487 |
+
name: MTEB MSMARCO
|
1488 |
+
config: default
|
1489 |
+
split: dev
|
1490 |
+
revision: None
|
1491 |
+
metrics:
|
1492 |
+
- type: map_at_1
|
1493 |
+
value: 23.702
|
1494 |
+
- type: map_at_10
|
1495 |
+
value: 36.414
|
1496 |
+
- type: map_at_100
|
1497 |
+
value: 37.561
|
1498 |
+
- type: map_at_1000
|
1499 |
+
value: 37.605
|
1500 |
+
- type: map_at_3
|
1501 |
+
value: 32.456
|
1502 |
+
- type: map_at_5
|
1503 |
+
value: 34.827000000000005
|
1504 |
+
- type: mrr_at_1
|
1505 |
+
value: 24.355
|
1506 |
+
- type: mrr_at_10
|
1507 |
+
value: 37.01
|
1508 |
+
- type: mrr_at_100
|
1509 |
+
value: 38.085
|
1510 |
+
- type: mrr_at_1000
|
1511 |
+
value: 38.123000000000005
|
1512 |
+
- type: mrr_at_3
|
1513 |
+
value: 33.117999999999995
|
1514 |
+
- type: mrr_at_5
|
1515 |
+
value: 35.452
|
1516 |
+
- type: ndcg_at_1
|
1517 |
+
value: 24.384
|
1518 |
+
- type: ndcg_at_10
|
1519 |
+
value: 43.456
|
1520 |
+
- type: ndcg_at_100
|
1521 |
+
value: 48.892
|
1522 |
+
- type: ndcg_at_1000
|
1523 |
+
value: 49.964
|
1524 |
+
- type: ndcg_at_3
|
1525 |
+
value: 35.475
|
1526 |
+
- type: ndcg_at_5
|
1527 |
+
value: 39.711
|
1528 |
+
- type: precision_at_1
|
1529 |
+
value: 24.384
|
1530 |
+
- type: precision_at_10
|
1531 |
+
value: 6.7940000000000005
|
1532 |
+
- type: precision_at_100
|
1533 |
+
value: 0.951
|
1534 |
+
- type: precision_at_1000
|
1535 |
+
value: 0.104
|
1536 |
+
- type: precision_at_3
|
1537 |
+
value: 15.052999999999999
|
1538 |
+
- type: precision_at_5
|
1539 |
+
value: 11.189
|
1540 |
+
- type: recall_at_1
|
1541 |
+
value: 23.702
|
1542 |
+
- type: recall_at_10
|
1543 |
+
value: 65.057
|
1544 |
+
- type: recall_at_100
|
1545 |
+
value: 90.021
|
1546 |
+
- type: recall_at_1000
|
1547 |
+
value: 98.142
|
1548 |
+
- type: recall_at_3
|
1549 |
+
value: 43.551
|
1550 |
+
- type: recall_at_5
|
1551 |
+
value: 53.738
|
1552 |
+
- task:
|
1553 |
+
type: Classification
|
1554 |
+
dataset:
|
1555 |
+
type: mteb/mtop_domain
|
1556 |
+
name: MTEB MTOPDomainClassification (en)
|
1557 |
+
config: en
|
1558 |
+
split: test
|
1559 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1560 |
+
metrics:
|
1561 |
+
- type: accuracy
|
1562 |
+
value: 94.62380300957591
|
1563 |
+
- type: f1
|
1564 |
+
value: 94.49871222100734
|
1565 |
+
- task:
|
1566 |
+
type: Classification
|
1567 |
+
dataset:
|
1568 |
+
type: mteb/mtop_intent
|
1569 |
+
name: MTEB MTOPIntentClassification (en)
|
1570 |
+
config: en
|
1571 |
+
split: test
|
1572 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1573 |
+
metrics:
|
1574 |
+
- type: accuracy
|
1575 |
+
value: 77.14090287277702
|
1576 |
+
- type: f1
|
1577 |
+
value: 60.32101258220515
|
1578 |
+
- task:
|
1579 |
+
type: Classification
|
1580 |
+
dataset:
|
1581 |
+
type: mteb/amazon_massive_intent
|
1582 |
+
name: MTEB MassiveIntentClassification (en)
|
1583 |
+
config: en
|
1584 |
+
split: test
|
1585 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1586 |
+
metrics:
|
1587 |
+
- type: accuracy
|
1588 |
+
value: 73.84330867518494
|
1589 |
+
- type: f1
|
1590 |
+
value: 71.92248688515255
|
1591 |
+
- task:
|
1592 |
+
type: Classification
|
1593 |
+
dataset:
|
1594 |
+
type: mteb/amazon_massive_scenario
|
1595 |
+
name: MTEB MassiveScenarioClassification (en)
|
1596 |
+
config: en
|
1597 |
+
split: test
|
1598 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1599 |
+
metrics:
|
1600 |
+
- type: accuracy
|
1601 |
+
value: 78.10692669804976
|
1602 |
+
- type: f1
|
1603 |
+
value: 77.9904839122866
|
1604 |
+
- task:
|
1605 |
+
type: Clustering
|
1606 |
+
dataset:
|
1607 |
+
type: mteb/medrxiv-clustering-p2p
|
1608 |
+
name: MTEB MedrxivClusteringP2P
|
1609 |
+
config: default
|
1610 |
+
split: test
|
1611 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1612 |
+
metrics:
|
1613 |
+
- type: v_measure
|
1614 |
+
value: 31.822988923078444
|
1615 |
+
- task:
|
1616 |
+
type: Clustering
|
1617 |
+
dataset:
|
1618 |
+
type: mteb/medrxiv-clustering-s2s
|
1619 |
+
name: MTEB MedrxivClusteringS2S
|
1620 |
+
config: default
|
1621 |
+
split: test
|
1622 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1623 |
+
metrics:
|
1624 |
+
- type: v_measure
|
1625 |
+
value: 30.38394880253403
|
1626 |
+
- task:
|
1627 |
+
type: Reranking
|
1628 |
+
dataset:
|
1629 |
+
type: mteb/mind_small
|
1630 |
+
name: MTEB MindSmallReranking
|
1631 |
+
config: default
|
1632 |
+
split: test
|
1633 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1634 |
+
metrics:
|
1635 |
+
- type: map
|
1636 |
+
value: 31.82504612539082
|
1637 |
+
- type: mrr
|
1638 |
+
value: 32.84462298174977
|
1639 |
+
- task:
|
1640 |
+
type: Retrieval
|
1641 |
+
dataset:
|
1642 |
+
type: nfcorpus
|
1643 |
+
name: MTEB NFCorpus
|
1644 |
+
config: default
|
1645 |
+
split: test
|
1646 |
+
revision: None
|
1647 |
+
metrics:
|
1648 |
+
- type: map_at_1
|
1649 |
+
value: 6.029
|
1650 |
+
- type: map_at_10
|
1651 |
+
value: 14.088999999999999
|
1652 |
+
- type: map_at_100
|
1653 |
+
value: 17.601
|
1654 |
+
- type: map_at_1000
|
1655 |
+
value: 19.144
|
1656 |
+
- type: map_at_3
|
1657 |
+
value: 10.156
|
1658 |
+
- type: map_at_5
|
1659 |
+
value: 11.892
|
1660 |
+
- type: mrr_at_1
|
1661 |
+
value: 46.44
|
1662 |
+
- type: mrr_at_10
|
1663 |
+
value: 56.596999999999994
|
1664 |
+
- type: mrr_at_100
|
1665 |
+
value: 57.11000000000001
|
1666 |
+
- type: mrr_at_1000
|
1667 |
+
value: 57.14
|
1668 |
+
- type: mrr_at_3
|
1669 |
+
value: 54.334
|
1670 |
+
- type: mrr_at_5
|
1671 |
+
value: 55.774
|
1672 |
+
- type: ndcg_at_1
|
1673 |
+
value: 44.891999999999996
|
1674 |
+
- type: ndcg_at_10
|
1675 |
+
value: 37.134
|
1676 |
+
- type: ndcg_at_100
|
1677 |
+
value: 33.652
|
1678 |
+
- type: ndcg_at_1000
|
1679 |
+
value: 42.548
|
1680 |
+
- type: ndcg_at_3
|
1681 |
+
value: 41.851
|
1682 |
+
- type: ndcg_at_5
|
1683 |
+
value: 39.842
|
1684 |
+
- type: precision_at_1
|
1685 |
+
value: 46.44
|
1686 |
+
- type: precision_at_10
|
1687 |
+
value: 27.647
|
1688 |
+
- type: precision_at_100
|
1689 |
+
value: 8.309999999999999
|
1690 |
+
- type: precision_at_1000
|
1691 |
+
value: 2.146
|
1692 |
+
- type: precision_at_3
|
1693 |
+
value: 39.422000000000004
|
1694 |
+
- type: precision_at_5
|
1695 |
+
value: 34.675
|
1696 |
+
- type: recall_at_1
|
1697 |
+
value: 6.029
|
1698 |
+
- type: recall_at_10
|
1699 |
+
value: 18.907
|
1700 |
+
- type: recall_at_100
|
1701 |
+
value: 33.76
|
1702 |
+
- type: recall_at_1000
|
1703 |
+
value: 65.14999999999999
|
1704 |
+
- type: recall_at_3
|
1705 |
+
value: 11.584999999999999
|
1706 |
+
- type: recall_at_5
|
1707 |
+
value: 14.626
|
1708 |
+
- task:
|
1709 |
+
type: Retrieval
|
1710 |
+
dataset:
|
1711 |
+
type: nq
|
1712 |
+
name: MTEB NQ
|
1713 |
+
config: default
|
1714 |
+
split: test
|
1715 |
+
revision: None
|
1716 |
+
metrics:
|
1717 |
+
- type: map_at_1
|
1718 |
+
value: 39.373000000000005
|
1719 |
+
- type: map_at_10
|
1720 |
+
value: 55.836
|
1721 |
+
- type: map_at_100
|
1722 |
+
value: 56.611999999999995
|
1723 |
+
- type: map_at_1000
|
1724 |
+
value: 56.63
|
1725 |
+
- type: map_at_3
|
1726 |
+
value: 51.747
|
1727 |
+
- type: map_at_5
|
1728 |
+
value: 54.337999999999994
|
1729 |
+
- type: mrr_at_1
|
1730 |
+
value: 44.147999999999996
|
1731 |
+
- type: mrr_at_10
|
1732 |
+
value: 58.42699999999999
|
1733 |
+
- type: mrr_at_100
|
1734 |
+
value: 58.902
|
1735 |
+
- type: mrr_at_1000
|
1736 |
+
value: 58.914
|
1737 |
+
- type: mrr_at_3
|
1738 |
+
value: 55.156000000000006
|
1739 |
+
- type: mrr_at_5
|
1740 |
+
value: 57.291000000000004
|
1741 |
+
- type: ndcg_at_1
|
1742 |
+
value: 44.119
|
1743 |
+
- type: ndcg_at_10
|
1744 |
+
value: 63.444
|
1745 |
+
- type: ndcg_at_100
|
1746 |
+
value: 66.40599999999999
|
1747 |
+
- type: ndcg_at_1000
|
1748 |
+
value: 66.822
|
1749 |
+
- type: ndcg_at_3
|
1750 |
+
value: 55.962
|
1751 |
+
- type: ndcg_at_5
|
1752 |
+
value: 60.228
|
1753 |
+
- type: precision_at_1
|
1754 |
+
value: 44.119
|
1755 |
+
- type: precision_at_10
|
1756 |
+
value: 10.006
|
1757 |
+
- type: precision_at_100
|
1758 |
+
value: 1.17
|
1759 |
+
- type: precision_at_1000
|
1760 |
+
value: 0.121
|
1761 |
+
- type: precision_at_3
|
1762 |
+
value: 25.135
|
1763 |
+
- type: precision_at_5
|
1764 |
+
value: 17.59
|
1765 |
+
- type: recall_at_1
|
1766 |
+
value: 39.373000000000005
|
1767 |
+
- type: recall_at_10
|
1768 |
+
value: 83.78999999999999
|
1769 |
+
- type: recall_at_100
|
1770 |
+
value: 96.246
|
1771 |
+
- type: recall_at_1000
|
1772 |
+
value: 99.324
|
1773 |
+
- type: recall_at_3
|
1774 |
+
value: 64.71900000000001
|
1775 |
+
- type: recall_at_5
|
1776 |
+
value: 74.508
|
1777 |
+
- task:
|
1778 |
+
type: Retrieval
|
1779 |
+
dataset:
|
1780 |
+
type: quora
|
1781 |
+
name: MTEB QuoraRetrieval
|
1782 |
+
config: default
|
1783 |
+
split: test
|
1784 |
+
revision: None
|
1785 |
+
metrics:
|
1786 |
+
- type: map_at_1
|
1787 |
+
value: 69.199
|
1788 |
+
- type: map_at_10
|
1789 |
+
value: 82.892
|
1790 |
+
- type: map_at_100
|
1791 |
+
value: 83.578
|
1792 |
+
- type: map_at_1000
|
1793 |
+
value: 83.598
|
1794 |
+
- type: map_at_3
|
1795 |
+
value: 79.948
|
1796 |
+
- type: map_at_5
|
1797 |
+
value: 81.779
|
1798 |
+
- type: mrr_at_1
|
1799 |
+
value: 79.67
|
1800 |
+
- type: mrr_at_10
|
1801 |
+
value: 86.115
|
1802 |
+
- type: mrr_at_100
|
1803 |
+
value: 86.249
|
1804 |
+
- type: mrr_at_1000
|
1805 |
+
value: 86.251
|
1806 |
+
- type: mrr_at_3
|
1807 |
+
value: 85.08200000000001
|
1808 |
+
- type: mrr_at_5
|
1809 |
+
value: 85.783
|
1810 |
+
- type: ndcg_at_1
|
1811 |
+
value: 79.67
|
1812 |
+
- type: ndcg_at_10
|
1813 |
+
value: 86.839
|
1814 |
+
- type: ndcg_at_100
|
1815 |
+
value: 88.252
|
1816 |
+
- type: ndcg_at_1000
|
1817 |
+
value: 88.401
|
1818 |
+
- type: ndcg_at_3
|
1819 |
+
value: 83.86200000000001
|
1820 |
+
- type: ndcg_at_5
|
1821 |
+
value: 85.473
|
1822 |
+
- type: precision_at_1
|
1823 |
+
value: 79.67
|
1824 |
+
- type: precision_at_10
|
1825 |
+
value: 13.19
|
1826 |
+
- type: precision_at_100
|
1827 |
+
value: 1.521
|
1828 |
+
- type: precision_at_1000
|
1829 |
+
value: 0.157
|
1830 |
+
- type: precision_at_3
|
1831 |
+
value: 36.677
|
1832 |
+
- type: precision_at_5
|
1833 |
+
value: 24.118000000000002
|
1834 |
+
- type: recall_at_1
|
1835 |
+
value: 69.199
|
1836 |
+
- type: recall_at_10
|
1837 |
+
value: 94.321
|
1838 |
+
- type: recall_at_100
|
1839 |
+
value: 99.20400000000001
|
1840 |
+
- type: recall_at_1000
|
1841 |
+
value: 99.947
|
1842 |
+
- type: recall_at_3
|
1843 |
+
value: 85.787
|
1844 |
+
- type: recall_at_5
|
1845 |
+
value: 90.365
|
1846 |
+
- task:
|
1847 |
+
type: Clustering
|
1848 |
+
dataset:
|
1849 |
+
type: mteb/reddit-clustering
|
1850 |
+
name: MTEB RedditClustering
|
1851 |
+
config: default
|
1852 |
+
split: test
|
1853 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1854 |
+
metrics:
|
1855 |
+
- type: v_measure
|
1856 |
+
value: 55.82810046856353
|
1857 |
+
- task:
|
1858 |
+
type: Clustering
|
1859 |
+
dataset:
|
1860 |
+
type: mteb/reddit-clustering-p2p
|
1861 |
+
name: MTEB RedditClusteringP2P
|
1862 |
+
config: default
|
1863 |
+
split: test
|
1864 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1865 |
+
metrics:
|
1866 |
+
- type: v_measure
|
1867 |
+
value: 63.38132611783628
|
1868 |
+
- task:
|
1869 |
+
type: Retrieval
|
1870 |
+
dataset:
|
1871 |
+
type: scidocs
|
1872 |
+
name: MTEB SCIDOCS
|
1873 |
+
config: default
|
1874 |
+
split: test
|
1875 |
+
revision: None
|
1876 |
+
metrics:
|
1877 |
+
- type: map_at_1
|
1878 |
+
value: 5.127000000000001
|
1879 |
+
- type: map_at_10
|
1880 |
+
value: 12.235
|
1881 |
+
- type: map_at_100
|
1882 |
+
value: 14.417
|
1883 |
+
- type: map_at_1000
|
1884 |
+
value: 14.75
|
1885 |
+
- type: map_at_3
|
1886 |
+
value: 8.906
|
1887 |
+
- type: map_at_5
|
1888 |
+
value: 10.591000000000001
|
1889 |
+
- type: mrr_at_1
|
1890 |
+
value: 25.2
|
1891 |
+
- type: mrr_at_10
|
1892 |
+
value: 35.879
|
1893 |
+
- type: mrr_at_100
|
1894 |
+
value: 36.935
|
1895 |
+
- type: mrr_at_1000
|
1896 |
+
value: 36.997
|
1897 |
+
- type: mrr_at_3
|
1898 |
+
value: 32.783
|
1899 |
+
- type: mrr_at_5
|
1900 |
+
value: 34.367999999999995
|
1901 |
+
- type: ndcg_at_1
|
1902 |
+
value: 25.2
|
1903 |
+
- type: ndcg_at_10
|
1904 |
+
value: 20.509
|
1905 |
+
- type: ndcg_at_100
|
1906 |
+
value: 28.67
|
1907 |
+
- type: ndcg_at_1000
|
1908 |
+
value: 34.42
|
1909 |
+
- type: ndcg_at_3
|
1910 |
+
value: 19.948
|
1911 |
+
- type: ndcg_at_5
|
1912 |
+
value: 17.166
|
1913 |
+
- type: precision_at_1
|
1914 |
+
value: 25.2
|
1915 |
+
- type: precision_at_10
|
1916 |
+
value: 10.440000000000001
|
1917 |
+
- type: precision_at_100
|
1918 |
+
value: 2.214
|
1919 |
+
- type: precision_at_1000
|
1920 |
+
value: 0.359
|
1921 |
+
- type: precision_at_3
|
1922 |
+
value: 18.533
|
1923 |
+
- type: precision_at_5
|
1924 |
+
value: 14.860000000000001
|
1925 |
+
- type: recall_at_1
|
1926 |
+
value: 5.127000000000001
|
1927 |
+
- type: recall_at_10
|
1928 |
+
value: 21.147
|
1929 |
+
- type: recall_at_100
|
1930 |
+
value: 44.946999999999996
|
1931 |
+
- type: recall_at_1000
|
1932 |
+
value: 72.89
|
1933 |
+
- type: recall_at_3
|
1934 |
+
value: 11.277
|
1935 |
+
- type: recall_at_5
|
1936 |
+
value: 15.042
|
1937 |
+
- task:
|
1938 |
+
type: STS
|
1939 |
+
dataset:
|
1940 |
+
type: mteb/sickr-sts
|
1941 |
+
name: MTEB SICK-R
|
1942 |
+
config: default
|
1943 |
+
split: test
|
1944 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1945 |
+
metrics:
|
1946 |
+
- type: cos_sim_pearson
|
1947 |
+
value: 83.0373011786213
|
1948 |
+
- type: cos_sim_spearman
|
1949 |
+
value: 79.27889560856613
|
1950 |
+
- type: euclidean_pearson
|
1951 |
+
value: 80.31186315495655
|
1952 |
+
- type: euclidean_spearman
|
1953 |
+
value: 79.41630415280811
|
1954 |
+
- type: manhattan_pearson
|
1955 |
+
value: 80.31755140442013
|
1956 |
+
- type: manhattan_spearman
|
1957 |
+
value: 79.43069870027611
|
1958 |
+
- task:
|
1959 |
+
type: STS
|
1960 |
+
dataset:
|
1961 |
+
type: mteb/sts12-sts
|
1962 |
+
name: MTEB STS12
|
1963 |
+
config: default
|
1964 |
+
split: test
|
1965 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1966 |
+
metrics:
|
1967 |
+
- type: cos_sim_pearson
|
1968 |
+
value: 84.8659751342045
|
1969 |
+
- type: cos_sim_spearman
|
1970 |
+
value: 76.95377612997667
|
1971 |
+
- type: euclidean_pearson
|
1972 |
+
value: 81.24552945497848
|
1973 |
+
- type: euclidean_spearman
|
1974 |
+
value: 77.18236963555253
|
1975 |
+
- type: manhattan_pearson
|
1976 |
+
value: 81.26477607759037
|
1977 |
+
- type: manhattan_spearman
|
1978 |
+
value: 77.13821753062756
|
1979 |
+
- task:
|
1980 |
+
type: STS
|
1981 |
+
dataset:
|
1982 |
+
type: mteb/sts13-sts
|
1983 |
+
name: MTEB STS13
|
1984 |
+
config: default
|
1985 |
+
split: test
|
1986 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1987 |
+
metrics:
|
1988 |
+
- type: cos_sim_pearson
|
1989 |
+
value: 83.34597139044875
|
1990 |
+
- type: cos_sim_spearman
|
1991 |
+
value: 84.124169425592
|
1992 |
+
- type: euclidean_pearson
|
1993 |
+
value: 83.68590721511401
|
1994 |
+
- type: euclidean_spearman
|
1995 |
+
value: 84.18846190846398
|
1996 |
+
- type: manhattan_pearson
|
1997 |
+
value: 83.57630235061498
|
1998 |
+
- type: manhattan_spearman
|
1999 |
+
value: 84.10244043726902
|
2000 |
+
- task:
|
2001 |
+
type: STS
|
2002 |
+
dataset:
|
2003 |
+
type: mteb/sts14-sts
|
2004 |
+
name: MTEB STS14
|
2005 |
+
config: default
|
2006 |
+
split: test
|
2007 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2008 |
+
metrics:
|
2009 |
+
- type: cos_sim_pearson
|
2010 |
+
value: 82.67641885599572
|
2011 |
+
- type: cos_sim_spearman
|
2012 |
+
value: 80.46450725650428
|
2013 |
+
- type: euclidean_pearson
|
2014 |
+
value: 81.61645042715865
|
2015 |
+
- type: euclidean_spearman
|
2016 |
+
value: 80.61418394236874
|
2017 |
+
- type: manhattan_pearson
|
2018 |
+
value: 81.55712034928871
|
2019 |
+
- type: manhattan_spearman
|
2020 |
+
value: 80.57905670523951
|
2021 |
+
- task:
|
2022 |
+
type: STS
|
2023 |
+
dataset:
|
2024 |
+
type: mteb/sts15-sts
|
2025 |
+
name: MTEB STS15
|
2026 |
+
config: default
|
2027 |
+
split: test
|
2028 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2029 |
+
metrics:
|
2030 |
+
- type: cos_sim_pearson
|
2031 |
+
value: 88.86650310886782
|
2032 |
+
- type: cos_sim_spearman
|
2033 |
+
value: 89.76081629222328
|
2034 |
+
- type: euclidean_pearson
|
2035 |
+
value: 89.1530747029954
|
2036 |
+
- type: euclidean_spearman
|
2037 |
+
value: 89.80990657280248
|
2038 |
+
- type: manhattan_pearson
|
2039 |
+
value: 89.10640563278132
|
2040 |
+
- type: manhattan_spearman
|
2041 |
+
value: 89.76282108434047
|
2042 |
+
- task:
|
2043 |
+
type: STS
|
2044 |
+
dataset:
|
2045 |
+
type: mteb/sts16-sts
|
2046 |
+
name: MTEB STS16
|
2047 |
+
config: default
|
2048 |
+
split: test
|
2049 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2050 |
+
metrics:
|
2051 |
+
- type: cos_sim_pearson
|
2052 |
+
value: 83.93864027911118
|
2053 |
+
- type: cos_sim_spearman
|
2054 |
+
value: 85.47096193999023
|
2055 |
+
- type: euclidean_pearson
|
2056 |
+
value: 85.03141840870533
|
2057 |
+
- type: euclidean_spearman
|
2058 |
+
value: 85.43124029598181
|
2059 |
+
- type: manhattan_pearson
|
2060 |
+
value: 84.99002664393512
|
2061 |
+
- type: manhattan_spearman
|
2062 |
+
value: 85.39169195120834
|
2063 |
+
- task:
|
2064 |
+
type: STS
|
2065 |
+
dataset:
|
2066 |
+
type: mteb/sts17-crosslingual-sts
|
2067 |
+
name: MTEB STS17 (en-en)
|
2068 |
+
config: en-en
|
2069 |
+
split: test
|
2070 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2071 |
+
metrics:
|
2072 |
+
- type: cos_sim_pearson
|
2073 |
+
value: 88.7045343749832
|
2074 |
+
- type: cos_sim_spearman
|
2075 |
+
value: 89.03262221146677
|
2076 |
+
- type: euclidean_pearson
|
2077 |
+
value: 89.56078218264365
|
2078 |
+
- type: euclidean_spearman
|
2079 |
+
value: 89.17827006466868
|
2080 |
+
- type: manhattan_pearson
|
2081 |
+
value: 89.52717595468582
|
2082 |
+
- type: manhattan_spearman
|
2083 |
+
value: 89.15878115952923
|
2084 |
+
- task:
|
2085 |
+
type: STS
|
2086 |
+
dataset:
|
2087 |
+
type: mteb/sts22-crosslingual-sts
|
2088 |
+
name: MTEB STS22 (en)
|
2089 |
+
config: en
|
2090 |
+
split: test
|
2091 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2092 |
+
metrics:
|
2093 |
+
- type: cos_sim_pearson
|
2094 |
+
value: 64.20191302875551
|
2095 |
+
- type: cos_sim_spearman
|
2096 |
+
value: 64.11446552557646
|
2097 |
+
- type: euclidean_pearson
|
2098 |
+
value: 64.6918197393619
|
2099 |
+
- type: euclidean_spearman
|
2100 |
+
value: 63.440182631197764
|
2101 |
+
- type: manhattan_pearson
|
2102 |
+
value: 64.55692904121835
|
2103 |
+
- type: manhattan_spearman
|
2104 |
+
value: 63.424877742756266
|
2105 |
+
- task:
|
2106 |
+
type: STS
|
2107 |
+
dataset:
|
2108 |
+
type: mteb/stsbenchmark-sts
|
2109 |
+
name: MTEB STSBenchmark
|
2110 |
+
config: default
|
2111 |
+
split: test
|
2112 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2113 |
+
metrics:
|
2114 |
+
- type: cos_sim_pearson
|
2115 |
+
value: 86.37793104662344
|
2116 |
+
- type: cos_sim_spearman
|
2117 |
+
value: 87.7357802629067
|
2118 |
+
- type: euclidean_pearson
|
2119 |
+
value: 87.4286301545109
|
2120 |
+
- type: euclidean_spearman
|
2121 |
+
value: 87.78452920777421
|
2122 |
+
- type: manhattan_pearson
|
2123 |
+
value: 87.42445169331255
|
2124 |
+
- type: manhattan_spearman
|
2125 |
+
value: 87.78537677249598
|
2126 |
+
- task:
|
2127 |
+
type: Reranking
|
2128 |
+
dataset:
|
2129 |
+
type: mteb/scidocs-reranking
|
2130 |
+
name: MTEB SciDocsRR
|
2131 |
+
config: default
|
2132 |
+
split: test
|
2133 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2134 |
+
metrics:
|
2135 |
+
- type: map
|
2136 |
+
value: 84.31465405081792
|
2137 |
+
- type: mrr
|
2138 |
+
value: 95.7173781193389
|
2139 |
+
- task:
|
2140 |
+
type: Retrieval
|
2141 |
+
dataset:
|
2142 |
+
type: scifact
|
2143 |
+
name: MTEB SciFact
|
2144 |
+
config: default
|
2145 |
+
split: test
|
2146 |
+
revision: None
|
2147 |
+
metrics:
|
2148 |
+
- type: map_at_1
|
2149 |
+
value: 57.760999999999996
|
2150 |
+
- type: map_at_10
|
2151 |
+
value: 67.904
|
2152 |
+
- type: map_at_100
|
2153 |
+
value: 68.539
|
2154 |
+
- type: map_at_1000
|
2155 |
+
value: 68.562
|
2156 |
+
- type: map_at_3
|
2157 |
+
value: 65.415
|
2158 |
+
- type: map_at_5
|
2159 |
+
value: 66.788
|
2160 |
+
- type: mrr_at_1
|
2161 |
+
value: 60.333000000000006
|
2162 |
+
- type: mrr_at_10
|
2163 |
+
value: 68.797
|
2164 |
+
- type: mrr_at_100
|
2165 |
+
value: 69.236
|
2166 |
+
- type: mrr_at_1000
|
2167 |
+
value: 69.257
|
2168 |
+
- type: mrr_at_3
|
2169 |
+
value: 66.667
|
2170 |
+
- type: mrr_at_5
|
2171 |
+
value: 67.967
|
2172 |
+
- type: ndcg_at_1
|
2173 |
+
value: 60.333000000000006
|
2174 |
+
- type: ndcg_at_10
|
2175 |
+
value: 72.24199999999999
|
2176 |
+
- type: ndcg_at_100
|
2177 |
+
value: 74.86
|
2178 |
+
- type: ndcg_at_1000
|
2179 |
+
value: 75.354
|
2180 |
+
- type: ndcg_at_3
|
2181 |
+
value: 67.93400000000001
|
2182 |
+
- type: ndcg_at_5
|
2183 |
+
value: 70.02199999999999
|
2184 |
+
- type: precision_at_1
|
2185 |
+
value: 60.333000000000006
|
2186 |
+
- type: precision_at_10
|
2187 |
+
value: 9.533
|
2188 |
+
- type: precision_at_100
|
2189 |
+
value: 1.09
|
2190 |
+
- type: precision_at_1000
|
2191 |
+
value: 0.11299999999999999
|
2192 |
+
- type: precision_at_3
|
2193 |
+
value: 26.778000000000002
|
2194 |
+
- type: precision_at_5
|
2195 |
+
value: 17.467
|
2196 |
+
- type: recall_at_1
|
2197 |
+
value: 57.760999999999996
|
2198 |
+
- type: recall_at_10
|
2199 |
+
value: 84.383
|
2200 |
+
- type: recall_at_100
|
2201 |
+
value: 96.267
|
2202 |
+
- type: recall_at_1000
|
2203 |
+
value: 100
|
2204 |
+
- type: recall_at_3
|
2205 |
+
value: 72.628
|
2206 |
+
- type: recall_at_5
|
2207 |
+
value: 78.094
|
2208 |
+
- task:
|
2209 |
+
type: PairClassification
|
2210 |
+
dataset:
|
2211 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2212 |
+
name: MTEB SprintDuplicateQuestions
|
2213 |
+
config: default
|
2214 |
+
split: test
|
2215 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2216 |
+
metrics:
|
2217 |
+
- type: cos_sim_accuracy
|
2218 |
+
value: 99.8029702970297
|
2219 |
+
- type: cos_sim_ap
|
2220 |
+
value: 94.9210324173411
|
2221 |
+
- type: cos_sim_f1
|
2222 |
+
value: 89.8521162672106
|
2223 |
+
- type: cos_sim_precision
|
2224 |
+
value: 91.67533818938605
|
2225 |
+
- type: cos_sim_recall
|
2226 |
+
value: 88.1
|
2227 |
+
- type: dot_accuracy
|
2228 |
+
value: 99.69504950495049
|
2229 |
+
- type: dot_ap
|
2230 |
+
value: 90.4919719146181
|
2231 |
+
- type: dot_f1
|
2232 |
+
value: 84.72289156626506
|
2233 |
+
- type: dot_precision
|
2234 |
+
value: 81.76744186046511
|
2235 |
+
- type: dot_recall
|
2236 |
+
value: 87.9
|
2237 |
+
- type: euclidean_accuracy
|
2238 |
+
value: 99.79702970297029
|
2239 |
+
- type: euclidean_ap
|
2240 |
+
value: 94.87827463795753
|
2241 |
+
- type: euclidean_f1
|
2242 |
+
value: 89.55680081507896
|
2243 |
+
- type: euclidean_precision
|
2244 |
+
value: 91.27725856697819
|
2245 |
+
- type: euclidean_recall
|
2246 |
+
value: 87.9
|
2247 |
+
- type: manhattan_accuracy
|
2248 |
+
value: 99.7990099009901
|
2249 |
+
- type: manhattan_ap
|
2250 |
+
value: 94.87587025149682
|
2251 |
+
- type: manhattan_f1
|
2252 |
+
value: 89.76298537569339
|
2253 |
+
- type: manhattan_precision
|
2254 |
+
value: 90.53916581892166
|
2255 |
+
- type: manhattan_recall
|
2256 |
+
value: 89
|
2257 |
+
- type: max_accuracy
|
2258 |
+
value: 99.8029702970297
|
2259 |
+
- type: max_ap
|
2260 |
+
value: 94.9210324173411
|
2261 |
+
- type: max_f1
|
2262 |
+
value: 89.8521162672106
|
2263 |
+
- task:
|
2264 |
+
type: Clustering
|
2265 |
+
dataset:
|
2266 |
+
type: mteb/stackexchange-clustering
|
2267 |
+
name: MTEB StackExchangeClustering
|
2268 |
+
config: default
|
2269 |
+
split: test
|
2270 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2271 |
+
metrics:
|
2272 |
+
- type: v_measure
|
2273 |
+
value: 65.92385753948724
|
2274 |
+
- task:
|
2275 |
+
type: Clustering
|
2276 |
+
dataset:
|
2277 |
+
type: mteb/stackexchange-clustering-p2p
|
2278 |
+
name: MTEB StackExchangeClusteringP2P
|
2279 |
+
config: default
|
2280 |
+
split: test
|
2281 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2282 |
+
metrics:
|
2283 |
+
- type: v_measure
|
2284 |
+
value: 33.671756975431144
|
2285 |
+
- task:
|
2286 |
+
type: Reranking
|
2287 |
+
dataset:
|
2288 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2289 |
+
name: MTEB StackOverflowDupQuestions
|
2290 |
+
config: default
|
2291 |
+
split: test
|
2292 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2293 |
+
metrics:
|
2294 |
+
- type: map
|
2295 |
+
value: 50.677928036739004
|
2296 |
+
- type: mrr
|
2297 |
+
value: 51.56413133435193
|
2298 |
+
- task:
|
2299 |
+
type: Summarization
|
2300 |
+
dataset:
|
2301 |
+
type: mteb/summeval
|
2302 |
+
name: MTEB SummEval
|
2303 |
+
config: default
|
2304 |
+
split: test
|
2305 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2306 |
+
metrics:
|
2307 |
+
- type: cos_sim_pearson
|
2308 |
+
value: 30.523589340819683
|
2309 |
+
- type: cos_sim_spearman
|
2310 |
+
value: 30.187407518823235
|
2311 |
+
- type: dot_pearson
|
2312 |
+
value: 29.039713969699015
|
2313 |
+
- type: dot_spearman
|
2314 |
+
value: 29.114740651155508
|
2315 |
+
- task:
|
2316 |
+
type: Retrieval
|
2317 |
+
dataset:
|
2318 |
+
type: trec-covid
|
2319 |
+
name: MTEB TRECCOVID
|
2320 |
+
config: default
|
2321 |
+
split: test
|
2322 |
+
revision: None
|
2323 |
+
metrics:
|
2324 |
+
- type: map_at_1
|
2325 |
+
value: 0.211
|
2326 |
+
- type: map_at_10
|
2327 |
+
value: 1.6199999999999999
|
2328 |
+
- type: map_at_100
|
2329 |
+
value: 8.658000000000001
|
2330 |
+
- type: map_at_1000
|
2331 |
+
value: 21.538
|
2332 |
+
- type: map_at_3
|
2333 |
+
value: 0.575
|
2334 |
+
- type: map_at_5
|
2335 |
+
value: 0.919
|
2336 |
+
- type: mrr_at_1
|
2337 |
+
value: 78
|
2338 |
+
- type: mrr_at_10
|
2339 |
+
value: 86.18599999999999
|
2340 |
+
- type: mrr_at_100
|
2341 |
+
value: 86.18599999999999
|
2342 |
+
- type: mrr_at_1000
|
2343 |
+
value: 86.18599999999999
|
2344 |
+
- type: mrr_at_3
|
2345 |
+
value: 85
|
2346 |
+
- type: mrr_at_5
|
2347 |
+
value: 85.9
|
2348 |
+
- type: ndcg_at_1
|
2349 |
+
value: 74
|
2350 |
+
- type: ndcg_at_10
|
2351 |
+
value: 66.542
|
2352 |
+
- type: ndcg_at_100
|
2353 |
+
value: 50.163999999999994
|
2354 |
+
- type: ndcg_at_1000
|
2355 |
+
value: 45.696999999999996
|
2356 |
+
- type: ndcg_at_3
|
2357 |
+
value: 71.531
|
2358 |
+
- type: ndcg_at_5
|
2359 |
+
value: 70.45
|
2360 |
+
- type: precision_at_1
|
2361 |
+
value: 78
|
2362 |
+
- type: precision_at_10
|
2363 |
+
value: 69.39999999999999
|
2364 |
+
- type: precision_at_100
|
2365 |
+
value: 51.06
|
2366 |
+
- type: precision_at_1000
|
2367 |
+
value: 20.022000000000002
|
2368 |
+
- type: precision_at_3
|
2369 |
+
value: 76
|
2370 |
+
- type: precision_at_5
|
2371 |
+
value: 74.8
|
2372 |
+
- type: recall_at_1
|
2373 |
+
value: 0.211
|
2374 |
+
- type: recall_at_10
|
2375 |
+
value: 1.813
|
2376 |
+
- type: recall_at_100
|
2377 |
+
value: 12.098
|
2378 |
+
- type: recall_at_1000
|
2379 |
+
value: 42.618
|
2380 |
+
- type: recall_at_3
|
2381 |
+
value: 0.603
|
2382 |
+
- type: recall_at_5
|
2383 |
+
value: 0.987
|
2384 |
+
- task:
|
2385 |
+
type: Retrieval
|
2386 |
+
dataset:
|
2387 |
+
type: webis-touche2020
|
2388 |
+
name: MTEB Touche2020
|
2389 |
+
config: default
|
2390 |
+
split: test
|
2391 |
+
revision: None
|
2392 |
+
metrics:
|
2393 |
+
- type: map_at_1
|
2394 |
+
value: 2.2079999999999997
|
2395 |
+
- type: map_at_10
|
2396 |
+
value: 7.777000000000001
|
2397 |
+
- type: map_at_100
|
2398 |
+
value: 12.825000000000001
|
2399 |
+
- type: map_at_1000
|
2400 |
+
value: 14.196
|
2401 |
+
- type: map_at_3
|
2402 |
+
value: 4.285
|
2403 |
+
- type: map_at_5
|
2404 |
+
value: 6.177
|
2405 |
+
- type: mrr_at_1
|
2406 |
+
value: 30.612000000000002
|
2407 |
+
- type: mrr_at_10
|
2408 |
+
value: 42.635
|
2409 |
+
- type: mrr_at_100
|
2410 |
+
value: 43.955
|
2411 |
+
- type: mrr_at_1000
|
2412 |
+
value: 43.955
|
2413 |
+
- type: mrr_at_3
|
2414 |
+
value: 38.435
|
2415 |
+
- type: mrr_at_5
|
2416 |
+
value: 41.088
|
2417 |
+
- type: ndcg_at_1
|
2418 |
+
value: 28.571
|
2419 |
+
- type: ndcg_at_10
|
2420 |
+
value: 20.666999999999998
|
2421 |
+
- type: ndcg_at_100
|
2422 |
+
value: 31.840000000000003
|
2423 |
+
- type: ndcg_at_1000
|
2424 |
+
value: 43.191
|
2425 |
+
- type: ndcg_at_3
|
2426 |
+
value: 23.45
|
2427 |
+
- type: ndcg_at_5
|
2428 |
+
value: 22.994
|
2429 |
+
- type: precision_at_1
|
2430 |
+
value: 30.612000000000002
|
2431 |
+
- type: precision_at_10
|
2432 |
+
value: 17.959
|
2433 |
+
- type: precision_at_100
|
2434 |
+
value: 6.755
|
2435 |
+
- type: precision_at_1000
|
2436 |
+
value: 1.4200000000000002
|
2437 |
+
- type: precision_at_3
|
2438 |
+
value: 23.810000000000002
|
2439 |
+
- type: precision_at_5
|
2440 |
+
value: 23.673
|
2441 |
+
- type: recall_at_1
|
2442 |
+
value: 2.2079999999999997
|
2443 |
+
- type: recall_at_10
|
2444 |
+
value: 13.144
|
2445 |
+
- type: recall_at_100
|
2446 |
+
value: 42.491
|
2447 |
+
- type: recall_at_1000
|
2448 |
+
value: 77.04299999999999
|
2449 |
+
- type: recall_at_3
|
2450 |
+
value: 5.3469999999999995
|
2451 |
+
- type: recall_at_5
|
2452 |
+
value: 9.139
|
2453 |
+
- task:
|
2454 |
+
type: Classification
|
2455 |
+
dataset:
|
2456 |
+
type: mteb/toxic_conversations_50k
|
2457 |
+
name: MTEB ToxicConversationsClassification
|
2458 |
+
config: default
|
2459 |
+
split: test
|
2460 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2461 |
+
metrics:
|
2462 |
+
- type: accuracy
|
2463 |
+
value: 70.9044
|
2464 |
+
- type: ap
|
2465 |
+
value: 14.625783489340755
|
2466 |
+
- type: f1
|
2467 |
+
value: 54.814936562590546
|
2468 |
+
- task:
|
2469 |
+
type: Classification
|
2470 |
+
dataset:
|
2471 |
+
type: mteb/tweet_sentiment_extraction
|
2472 |
+
name: MTEB TweetSentimentExtractionClassification
|
2473 |
+
config: default
|
2474 |
+
split: test
|
2475 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2476 |
+
metrics:
|
2477 |
+
- type: accuracy
|
2478 |
+
value: 60.94227504244483
|
2479 |
+
- type: f1
|
2480 |
+
value: 61.22516038508854
|
2481 |
+
- task:
|
2482 |
+
type: Clustering
|
2483 |
+
dataset:
|
2484 |
+
type: mteb/twentynewsgroups-clustering
|
2485 |
+
name: MTEB TwentyNewsgroupsClustering
|
2486 |
+
config: default
|
2487 |
+
split: test
|
2488 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2489 |
+
metrics:
|
2490 |
+
- type: v_measure
|
2491 |
+
value: 49.602409155145864
|
2492 |
+
- task:
|
2493 |
+
type: PairClassification
|
2494 |
+
dataset:
|
2495 |
+
type: mteb/twittersemeval2015-pairclassification
|
2496 |
+
name: MTEB TwitterSemEval2015
|
2497 |
+
config: default
|
2498 |
+
split: test
|
2499 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2500 |
+
metrics:
|
2501 |
+
- type: cos_sim_accuracy
|
2502 |
+
value: 86.94641473445789
|
2503 |
+
- type: cos_sim_ap
|
2504 |
+
value: 76.91572747061197
|
2505 |
+
- type: cos_sim_f1
|
2506 |
+
value: 70.14348097317529
|
2507 |
+
- type: cos_sim_precision
|
2508 |
+
value: 66.53254437869822
|
2509 |
+
- type: cos_sim_recall
|
2510 |
+
value: 74.1688654353562
|
2511 |
+
- type: dot_accuracy
|
2512 |
+
value: 84.80061989628658
|
2513 |
+
- type: dot_ap
|
2514 |
+
value: 70.7952548895177
|
2515 |
+
- type: dot_f1
|
2516 |
+
value: 65.44780728844965
|
2517 |
+
- type: dot_precision
|
2518 |
+
value: 61.53310104529617
|
2519 |
+
- type: dot_recall
|
2520 |
+
value: 69.89445910290237
|
2521 |
+
- type: euclidean_accuracy
|
2522 |
+
value: 86.94641473445789
|
2523 |
+
- type: euclidean_ap
|
2524 |
+
value: 76.80774009393652
|
2525 |
+
- type: euclidean_f1
|
2526 |
+
value: 70.30522503879979
|
2527 |
+
- type: euclidean_precision
|
2528 |
+
value: 68.94977168949772
|
2529 |
+
- type: euclidean_recall
|
2530 |
+
value: 71.71503957783642
|
2531 |
+
- type: manhattan_accuracy
|
2532 |
+
value: 86.8629671574179
|
2533 |
+
- type: manhattan_ap
|
2534 |
+
value: 76.76518632600317
|
2535 |
+
- type: manhattan_f1
|
2536 |
+
value: 70.16056518946692
|
2537 |
+
- type: manhattan_precision
|
2538 |
+
value: 68.360450563204
|
2539 |
+
- type: manhattan_recall
|
2540 |
+
value: 72.0580474934037
|
2541 |
+
- type: max_accuracy
|
2542 |
+
value: 86.94641473445789
|
2543 |
+
- type: max_ap
|
2544 |
+
value: 76.91572747061197
|
2545 |
+
- type: max_f1
|
2546 |
+
value: 70.30522503879979
|
2547 |
+
- task:
|
2548 |
+
type: PairClassification
|
2549 |
+
dataset:
|
2550 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2551 |
+
name: MTEB TwitterURLCorpus
|
2552 |
+
config: default
|
2553 |
+
split: test
|
2554 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2555 |
+
metrics:
|
2556 |
+
- type: cos_sim_accuracy
|
2557 |
+
value: 89.10428066907285
|
2558 |
+
- type: cos_sim_ap
|
2559 |
+
value: 86.25114759921435
|
2560 |
+
- type: cos_sim_f1
|
2561 |
+
value: 78.37857884586856
|
2562 |
+
- type: cos_sim_precision
|
2563 |
+
value: 75.60818546078993
|
2564 |
+
- type: cos_sim_recall
|
2565 |
+
value: 81.35971666153372
|
2566 |
+
- type: dot_accuracy
|
2567 |
+
value: 87.41995575736406
|
2568 |
+
- type: dot_ap
|
2569 |
+
value: 81.51838010086782
|
2570 |
+
- type: dot_f1
|
2571 |
+
value: 74.77398015435503
|
2572 |
+
- type: dot_precision
|
2573 |
+
value: 71.53002390662354
|
2574 |
+
- type: dot_recall
|
2575 |
+
value: 78.32614721281182
|
2576 |
+
- type: euclidean_accuracy
|
2577 |
+
value: 89.12368533395428
|
2578 |
+
- type: euclidean_ap
|
2579 |
+
value: 86.33456799874504
|
2580 |
+
- type: euclidean_f1
|
2581 |
+
value: 78.45496750232127
|
2582 |
+
- type: euclidean_precision
|
2583 |
+
value: 75.78388462366364
|
2584 |
+
- type: euclidean_recall
|
2585 |
+
value: 81.32121958731136
|
2586 |
+
- type: manhattan_accuracy
|
2587 |
+
value: 89.10622113556099
|
2588 |
+
- type: manhattan_ap
|
2589 |
+
value: 86.31215061745333
|
2590 |
+
- type: manhattan_f1
|
2591 |
+
value: 78.40684906011539
|
2592 |
+
- type: manhattan_precision
|
2593 |
+
value: 75.89536643366722
|
2594 |
+
- type: manhattan_recall
|
2595 |
+
value: 81.09023714197721
|
2596 |
+
- type: max_accuracy
|
2597 |
+
value: 89.12368533395428
|
2598 |
+
- type: max_ap
|
2599 |
+
value: 86.33456799874504
|
2600 |
+
- type: max_f1
|
2601 |
+
value: 78.45496750232127
|
2602 |
+
language:
|
2603 |
+
- en
|
2604 |
license: mit
|
2605 |
---
|
2606 |
+
|
2607 |
+
# E5-large-v2
|
2608 |
+
|
2609 |
+
[Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
|
2610 |
+
Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
|
2611 |
+
|
2612 |
+
This model has 24 layers and the embedding size is 1024.
|
2613 |
+
|
2614 |
+
## Usage
|
2615 |
+
|
2616 |
+
Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
|
2617 |
+
|
2618 |
+
```python
|
2619 |
+
import torch.nn.functional as F
|
2620 |
+
|
2621 |
+
from torch import Tensor
|
2622 |
+
from transformers import AutoTokenizer, AutoModel
|
2623 |
+
|
2624 |
+
|
2625 |
+
def average_pool(last_hidden_states: Tensor,
|
2626 |
+
attention_mask: Tensor) -> Tensor:
|
2627 |
+
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
2628 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
2629 |
+
|
2630 |
+
|
2631 |
+
# Each input text should start with "query: " or "passage: ".
|
2632 |
+
# For tasks other than retrieval, you can simply use the "query: " prefix.
|
2633 |
+
input_texts = ['query: how much protein should a female eat',
|
2634 |
+
'query: summit define',
|
2635 |
+
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
|
2636 |
+
"passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."]
|
2637 |
+
|
2638 |
+
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-large-v2')
|
2639 |
+
model = AutoModel.from_pretrained('intfloat/e5-large-v2')
|
2640 |
+
|
2641 |
+
# Tokenize the input texts
|
2642 |
+
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
2643 |
+
|
2644 |
+
outputs = model(**batch_dict)
|
2645 |
+
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
2646 |
+
|
2647 |
+
# normalize embeddings
|
2648 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
2649 |
+
scores = (embeddings[:2] @ embeddings[2:].T) * 100
|
2650 |
+
print(scores.tolist())
|
2651 |
+
```
|
2652 |
+
|
2653 |
+
## Training Details
|
2654 |
+
|
2655 |
+
Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf).
|
2656 |
+
|
2657 |
+
## Benchmark Evaluation
|
2658 |
+
|
2659 |
+
Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results
|
2660 |
+
on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316).
|
2661 |
+
|
2662 |
+
## Support for Sentence Transformers
|
2663 |
+
|
2664 |
+
Below is an example for usage with sentence_transformers.
|
2665 |
+
```python
|
2666 |
+
from sentence_transformers import SentenceTransformer
|
2667 |
+
model = SentenceTransformer('intfloat/e5-large-v2')
|
2668 |
+
input_texts = [
|
2669 |
+
'query: how much protein should a female eat',
|
2670 |
+
'query: summit define',
|
2671 |
+
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
|
2672 |
+
"passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
|
2673 |
+
]
|
2674 |
+
embeddings = model.encode(input_texts, normalize_embeddings=True)
|
2675 |
+
```
|
2676 |
+
|
2677 |
+
Package requirements
|
2678 |
+
|
2679 |
+
`pip install sentence_transformers~=2.2.2`
|
2680 |
+
|
2681 |
+
Contributors: [michaelfeil](https://huggingface.co/michaelfeil)
|
2682 |
+
|
2683 |
+
## FAQ
|
2684 |
+
|
2685 |
+
**1. Do I need to add the prefix "query: " and "passage: " to input texts?**
|
2686 |
+
|
2687 |
+
Yes, this is how the model is trained, otherwise you will see a performance degradation.
|
2688 |
+
|
2689 |
+
Here are some rules of thumb:
|
2690 |
+
- Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval.
|
2691 |
+
|
2692 |
+
- Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval.
|
2693 |
+
|
2694 |
+
- Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering.
|
2695 |
+
|
2696 |
+
**2. Why are my reproduced results slightly different from reported in the model card?**
|
2697 |
+
|
2698 |
+
Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences.
|
2699 |
+
|
2700 |
+
**3. Why does the cosine similarity scores distribute around 0.7 to 1.0?**
|
2701 |
+
|
2702 |
+
This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss.
|
2703 |
+
|
2704 |
+
For text embedding tasks like text retrieval or semantic similarity,
|
2705 |
+
what matters is the relative order of the scores instead of the absolute values,
|
2706 |
+
so this should not be an issue.
|
2707 |
+
|
2708 |
+
## Citation
|
2709 |
+
|
2710 |
+
If you find our paper or models helpful, please consider cite as follows:
|
2711 |
+
|
2712 |
+
```
|
2713 |
+
@article{wang2022text,
|
2714 |
+
title={Text Embeddings by Weakly-Supervised Contrastive Pre-training},
|
2715 |
+
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu},
|
2716 |
+
journal={arXiv preprint arXiv:2212.03533},
|
2717 |
+
year={2022}
|
2718 |
+
}
|
2719 |
+
```
|
2720 |
+
|
2721 |
+
## Limitations
|
2722 |
+
|
2723 |
+
This model only works for English texts. Long texts will be truncated to at most 512 tokens.
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "tmp/",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 4096,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.29.0.dev0",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 30522
|
25 |
+
}
|
handler.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import Tensor
|
6 |
+
from transformers import AutoTokenizer, AutoModel
|
7 |
+
|
8 |
+
def average_pool(last_hidden_states: Tensor,
|
9 |
+
attention_mask: Tensor) -> Tensor:
|
10 |
+
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
11 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
12 |
+
|
13 |
+
class EndpointHandler():
|
14 |
+
def __init__(self, path=""):
|
15 |
+
self.pipeline = pipeline("feature-extraction", model=path)
|
16 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
17 |
+
self.model = AutoModel.from_pretrained(path)
|
18 |
+
|
19 |
+
def __call__(self, data: Dict[str, Any]) -> List[List[int]]:
|
20 |
+
inputs = data.pop("inputs",data)
|
21 |
+
|
22 |
+
batch_dict = self.tokenizer(inputs, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
23 |
+
|
24 |
+
outputs = self.model(**batch_dict)
|
25 |
+
|
26 |
+
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
27 |
+
embeddings = F.normalize(embeddings, p=2, dim=1).tolist()
|
28 |
+
|
29 |
+
return embeddings
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d741c1a688a6169af0ecb5a047c44645cd992c31e1bf431269f98bba9ae2911a
|
3 |
+
size 1340616616
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
onnx/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43fd21bf73e41d01db17d848aa96e50814456b000bd41909c95f2459ecd4ee4f
|
3 |
+
size 1336854281
|
onnx/model_quantized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf08540722d90eebcb7552fc7af4ef4ebd133e60823b1af8f5a1d54aee944a97
|
3 |
+
size 336983163
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d3fda35853349a026a61027d93bbfd65d7658287a2043f95af3e4397a4e9c5e
|
3 |
+
size 1340698349
|
quantize_config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"per_channel": true,
|
3 |
+
"reduce_range": true,
|
4 |
+
"per_model_config": {
|
5 |
+
"model": {
|
6 |
+
"op_types": [
|
7 |
+
"Erf",
|
8 |
+
"Mul",
|
9 |
+
"ReduceMean",
|
10 |
+
"Unsqueeze",
|
11 |
+
"Gather",
|
12 |
+
"Div",
|
13 |
+
"MatMul",
|
14 |
+
"Reshape",
|
15 |
+
"Cast",
|
16 |
+
"Add",
|
17 |
+
"Slice",
|
18 |
+
"Shape",
|
19 |
+
"Sqrt",
|
20 |
+
"Softmax",
|
21 |
+
"Pow",
|
22 |
+
"Concat",
|
23 |
+
"Constant",
|
24 |
+
"Sub",
|
25 |
+
"Transpose"
|
26 |
+
],
|
27 |
+
"weight_type": "QInt8"
|
28 |
+
}
|
29 |
+
}
|
30 |
+
}
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_lower_case": true,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 512,
|
7 |
+
"pad_token": "[PAD]",
|
8 |
+
"sep_token": "[SEP]",
|
9 |
+
"strip_accents": null,
|
10 |
+
"tokenize_chinese_chars": true,
|
11 |
+
"tokenizer_class": "BertTokenizer",
|
12 |
+
"unk_token": "[UNK]"
|
13 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|