# %% from transformers import AutoTokenizer, AutoModelForCausalLM from datasets import load_dataset, Dataset from trl import DPOTrainer, DPOConfig from peft import LoraConfig from peft import prepare_model_for_kbit_training import torch import pandas as pd # %% dataset = load_dataset("Undi95/Weyaxi-humanish-dpo-project-noemoji")["train"] model_name = "Undi95/Meta-Llama-3.1-8B-Claude-bf16" tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.padding_side = "right" tokenizer.pad_token = tokenizer.eos_token # %% tokenizer.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}" # %% dataset2 = load_dataset("ResplendentAI/NSFW_RP_Format_DPO")['train'] # %% dataset = dataset.to_pandas( ) dataset2 = dataset2.to_pandas() dataset = Dataset.from_pandas(pd.concat([dataset.sample(400), dataset2]).sample(frac=1)) # %% def template_prompt(system, prompt): if system is None: messages = [ {"role": "user", "content": prompt}, ] else: messages = [ { "role": "system", "content": system, }, {"role": "user", "content": prompt}, ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=False ) return prompt def template_answer(answer): messages = [ { "role": "assistant", "content": answer, }, ] answer = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=False ) return answer # %% # create new columns dataset = dataset.map( lambda x: { "prompt": template_prompt(None, x["prompt"]).replace("<|start_header_id|>assistant<|end_header_id|>\n\n", "") }, # change this according to the dataset!!! ) # %% dataset = dataset.map( lambda x: {"chosen": template_answer(x["chosen"]).replace('<|begin_of_text|>', '').replace('><|start_header_id|>assistant<|end_header_id|>\n\n', '>')}, ) dataset = dataset.map( lambda x: {"rejected": template_answer(x["rejected"]).replace('<|begin_of_text|>', '').replace('><|start_header_id|>assistant<|end_header_id|>\n\n', '>')}, ) # %% dataset[0] # %% # LoRA configuration peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=[ "k_proj", "gate_proj", "v_proj", "up_proj", "q_proj", "o_proj", "down_proj", ], ) # Model to fine-tune model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, load_in_4bit=True, device_map="auto", ) model.config.use_cache = False model.gradient_checkpointing_enable() model = prepare_model_for_kbit_training(model) # %% output_name = f"checkpoints/exp_human_{model_name}" training_args = DPOConfig( per_device_train_batch_size=1, gradient_accumulation_steps=4, num_train_epochs=1, gradient_checkpointing=True, output_dir=output_name, logging_steps=1, max_steps=50 ) trainer = DPOTrainer( model, ref_model=None, train_dataset=dataset, tokenizer=tokenizer, args=training_args, peft_config=peft_config, ) trainer.train() trainer.save_model(output_name)