First trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 274.97 +/- 13.75
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6847d747a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6847d74830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6847d748c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6847d74950>", "_build": "<function ActorCriticPolicy._build at 0x7f6847d749e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6847d74a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6847d74b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6847d74b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6847d74c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6847d74cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6847d74d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6847daff60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 802816, "_total_timesteps": 800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651713582.340361, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABe2jwsQ54/c7z8PVE5Bb8WMJk9Xj8OPQAAAAAAAAAAWsuvPW1oTj4kh7m9fHZ5vnTVvL3y9ya9AAAAAAAAAADNDBQ8qGCDP2+DmL13Keu+BM6Hu/Ayb70AAAAAAAAAABqPiz171qu6KlkDOFHo4DJoybC6jnwWtwAAgD8AAIA/AOCnO308Bz7rGpW8GTOZvr7dCr0b/TW8AAAAAAAAAAAa45k9IksNPiLIIj3NGWi+f4gVvSCExLwAAAAAAAAAANrIB76HelY+DquRPmLpib50b3s9iflAPQAAAAAAAAAAmqltPU9oPLz3l4g838SLPA7vtD2FqmS9AACAPwAAgD+NYuI9oZn2PrMi7b4CVIy+Kl2iPMuOq74AAAAAAAAAAIBMcT2ksGs4ZsYzM5sHZK5qUQi6tSPPswAAgD8AAIA/cwuFvUbpgz+UpRy+W37ovvdb+r1z2Wu9AAAAAAAAAADm2L49Re2wPPCeL71u5yu+aQt/vfi5Ez0AAAAAAAAAAOYxTT2ueZS6OVw8uo/ALbWvOhe6wyNaOQAAgD8AAIA/Goolvbiuwz2syBs+LCibvqJBhD1d8Fm9AAAAAAAAAADamoQ9ey6Hul/nIzfmvz4y8Yc/O9+AP7YAAIA/AACAP80A+D32nF87K1FLvckeD7yvYgU9Ye0AvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpBgg0YQQckCUhpRSlIwBbJRNHQGMAXSUR0Ci3+r/82rGdX2UKGgGaAloD0MIprc/F41sbkCUhpRSlGgVTQIBaBZHQKLgcPz4DcN1fZQoaAZoCWgPQwgIzEOmfIAiQJSGlFKUaBVLw2gWR0Ci4IOZ9d/sdX2UKGgGaAloD0MI+WhxxjDtckCUhpRSlGgVS+ZoFkdAouCK4UeuFHV9lChoBmgJaA9DCNV46SYx325AlIaUUpRoFU0AAWgWR0Ci4I704BFNdX2UKGgGaAloD0MI7bYLzXUmc0CUhpRSlGgVTQMBaBZHQKLg3CtzS1F1fZQoaAZoCWgPQwjqCUs8IM9sQJSGlFKUaBVL+mgWR0Ci4QcFhXr/dX2UKGgGaAloD0MIoRABhxCtckCUhpRSlGgVTRYBaBZHQKLhhTQVsUJ1fZQoaAZoCWgPQwhnCp3X2BpwQJSGlFKUaBVL5GgWR0Ci4Zg+IMz/dX2UKGgGaAloD0MIyf/k716MckCUhpRSlGgVS/JoFkdAouG7BEa2nnV9lChoBmgJaA9DCOnxe5v+C3BAlIaUUpRoFU0bAWgWR0Ci4dHCwbEQdX2UKGgGaAloD0MIf/W4bzWcckCUhpRSlGgVTT0BaBZHQKLh3ky1uzh1fZQoaAZoCWgPQwjtuUxNgj1xQJSGlFKUaBVNFgFoFkdAouJsfFJg9nV9lChoBmgJaA9DCPnzbcES+XBAlIaUUpRoFU0pAWgWR0Ci4qtKqXF+dX2UKGgGaAloD0MITn0geScockCUhpRSlGgVTU4BaBZHQKLi3F+/gzh1fZQoaAZoCWgPQwi+F1+0x1pvQJSGlFKUaBVNLAFoFkdAouPy2a2F4HV9lChoBmgJaA9DCA8pBkg0jWxAlIaUUpRoFUv7aBZHQKLkMV1wHZ91fZQoaAZoCWgPQwjcuMX8XPJxQJSGlFKUaBVNAgFoFkdAouTQdELH/HV9lChoBmgJaA9DCMhhMH/FPnJAlIaUUpRoFUv1aBZHQKLlBL127nR1fZQoaAZoCWgPQwio4zEDFVZyQJSGlFKUaBVNFQFoFkdAouVFfb9IgHV9lChoBmgJaA9DCFgczvxqMXFAlIaUUpRoFUvdaBZHQKLlSu2Zy+91fZQoaAZoCWgPQwirsu+KoFJzQJSGlFKUaBVL4mgWR0Ci5XOLaVUudX2UKGgGaAloD0MI0zB8RExZbkCUhpRSlGgVTQoBaBZHQKLlk1yeZoh1fZQoaAZoCWgPQwjIXYQpithwQJSGlFKUaBVNLwFoFkdAouXDK7qY7nV9lChoBmgJaA9DCE8hV+pZ6W9AlIaUUpRoFUvnaBZHQKLl0RoRIz51fZQoaAZoCWgPQwjWbrvQXOtuQJSGlFKUaBVNPgFoFkdAouX6fvnbI3V9lChoBmgJaA9DCCS2uwdoiG5AlIaUUpRoFUv/aBZHQKLmCghbGFV1fZQoaAZoCWgPQwjtRElIpIE5QJSGlFKUaBVLxGgWR0Ci5j8hkiD/dX2UKGgGaAloD0MIdqp8z0h4ckCUhpRSlGgVTRMBaBZHQKLmaD9Oymh1fZQoaAZoCWgPQwiP3nAfOfBwQJSGlFKUaBVNBgFoFkdAoubJ7zCk43V9lChoBmgJaA9DCLSR66bUFnFAlIaUUpRoFU0UAWgWR0Ci50CCz1K5dX2UKGgGaAloD0MIxCPx8nTRVUCUhpRSlGgVS6VoFkdAouehZyMkyHV9lChoBmgJaA9DCFyQLcvXoFFAlIaUUpRoFUvTaBZHQKLnrLf1pTN1fZQoaAZoCWgPQwiIE5hOa6BxQJSGlFKUaBVNCQFoFkdAouhQDJU5uXV9lChoBmgJaA9DCFFmg0wyJnNAlIaUUpRoFUv2aBZHQKLozruYx+N1fZQoaAZoCWgPQwg7jbRU3nhxQJSGlFKUaBVL5GgWR0Ci6OdYwIt2dX2UKGgGaAloD0MID9JT5JAFb0CUhpRSlGgVS/VoFkdAouljRjSXt3V9lChoBmgJaA9DCPD49q4BNXBAlIaUUpRoFU0JAWgWR0Ci90SQ5myxdX2UKGgGaAloD0MIXoWUn9S3cUCUhpRSlGgVTQQBaBZHQKL3dRsuWbB1fZQoaAZoCWgPQwimYmNeR3pxQJSGlFKUaBVL52gWR0Ci93o5xR2sdX2UKGgGaAloD0MIISI17WL+ckCUhpRSlGgVS9xoFkdAovf6++M6zXV9lChoBmgJaA9DCJoHsMjvVHFAlIaUUpRoFU0pAWgWR0Ci+BgT7EYPdX2UKGgGaAloD0MIxR1v8hu5ckCUhpRSlGgVTRgBaBZHQKL4IGh24d91fZQoaAZoCWgPQwhO1NLcijhvQJSGlFKUaBVNIAFoFkdAovgv2K2rn3V9lChoBmgJaA9DCJMANbVs+nBAlIaUUpRoFU1KAWgWR0Ci+C5QpF1CdX2UKGgGaAloD0MIzZTW3xJOcECUhpRSlGgVTSkBaBZHQKL4wx46fap1fZQoaAZoCWgPQwjLK9fbprJyQJSGlFKUaBVNAgFoFkdAovkGepXIVHV9lChoBmgJaA9DCF9AL9y5fG9AlIaUUpRoFUvqaBZHQKL5EdbxEv11fZQoaAZoCWgPQwiTcCGPYF9tQJSGlFKUaBVNBwFoFkdAovltaSs8xXV9lChoBmgJaA9DCLgiMUFN/HFAlIaUUpRoFUv8aBZHQKL55pxFRYR1fZQoaAZoCWgPQwiKlGbzOCFzQJSGlFKUaBVL3WgWR0Ci+e+717IDdX2UKGgGaAloD0MIqOUHrnIMbkCUhpRSlGgVTQABaBZHQKL6ZJAdGRV1fZQoaAZoCWgPQwhBYyZRb7RxQJSGlFKUaBVL6mgWR0Ci+ou27Wd3dX2UKGgGaAloD0MIICbhQh56cUCUhpRSlGgVS+doFkdAovrw5Jbt7nV9lChoBmgJaA9DCI+LahHRUW9AlIaUUpRoFUvgaBZHQKL7rg5zYEp1fZQoaAZoCWgPQwju68A5Iz1yQJSGlFKUaBVNDgFoFkdAovvXFHavinV9lChoBmgJaA9DCOsB85Cp/XBAlIaUUpRoFU0eAWgWR0Ci/B/Q0GeMdX2UKGgGaAloD0MIda29T9UgcUCUhpRSlGgVTQoBaBZHQKL8ahEBsAN1fZQoaAZoCWgPQwhtdM5PMY5yQJSGlFKUaBVNFQFoFkdAovx393r2QHV9lChoBmgJaA9DCC2Xjc45QHFAlIaUUpRoFUvoaBZHQKL8j2RJVbR1fZQoaAZoCWgPQwhFvHX+7c1yQJSGlFKUaBVNEAFoFkdAovyUeU6gd3V9lChoBmgJaA9DCPEQxk/js3BAlIaUUpRoFUvoaBZHQKL8z2icoYx1fZQoaAZoCWgPQwgujzUjg8VxQJSGlFKUaBVNKAFoFkdAovzZUgjhUHV9lChoBmgJaA9DCO85sBwhS3FAlIaUUpRoFU0AAWgWR0Ci/TD+aScLdX2UKGgGaAloD0MIPQ6D+St7VUCUhpRSlGgVS6hoFkdAov1bAFgUlHV9lChoBmgJaA9DCOKuXkXGEHBAlIaUUpRoFUv8aBZHQKL9gQ5FPSF1fZQoaAZoCWgPQwhsy4Cz1FlwQJSGlFKUaBVL/mgWR0Ci/opI1+AmdX2UKGgGaAloD0MIAMeePde3ckCUhpRSlGgVTTQBaBZHQKL+8oScslN1fZQoaAZoCWgPQwivCWmNAVxxQJSGlFKUaBVNOgFoFkdAov8cORT0hHV9lChoBmgJaA9DCFOUS+OXumxAlIaUUpRoFU0VAWgWR0Ci/5jynUDudX2UKGgGaAloD0MIbNECtK1IbUCUhpRSlGgVS/hoFkdAov/Od/axo3V9lChoBmgJaA9DCKZ7ndTXZHJAlIaUUpRoFUvXaBZHQKL/9bfxc3V1fZQoaAZoCWgPQwi0yeGTTu9xQJSGlFKUaBVNAAFoFkdAowBcglnh9HV9lChoBmgJaA9DCIqvdhRnLG5AlIaUUpRoFUvraBZHQKMAa+yquKZ1fZQoaAZoCWgPQwjc2OxIdXdtQJSGlFKUaBVNFAFoFkdAowB1mvnr6nV9lChoBmgJaA9DCAvxSLw8WXFAlIaUUpRoFU0NAWgWR0CjANcdo372dX2UKGgGaAloD0MIiNnLttO6R0CUhpRSlGgVS8toFkdAowD794u9OHV9lChoBmgJaA9DCKZ7ndQXdXNAlIaUUpRoFU0DAWgWR0CjARhYNiH7dX2UKGgGaAloD0MIINEEiljKcECUhpRSlGgVTRsBaBZHQKMBOMsH0K91fZQoaAZoCWgPQwh0YDlChoJyQJSGlFKUaBVL8mgWR0CjAWfcWTHKdX2UKGgGaAloD0MIPZ0rSgkzbkCUhpRSlGgVTToBaBZHQKMCZftQbdd1fZQoaAZoCWgPQwiez4B6swVzQJSGlFKUaBVL7WgWR0CjAv3yAhB7dX2UKGgGaAloD0MIEp87wf7rUkCUhpRSlGgVS79oFkdAowMAuK4x13V9lChoBmgJaA9DCKGd0yzQHG9AlIaUUpRoFU0LAWgWR0CjAyFQMx46dX2UKGgGaAloD0MIPKBsyhW4cUCUhpRSlGgVTX4BaBZHQKMDLLlmvnt1fZQoaAZoCWgPQwhFSUikrQdyQJSGlFKUaBVL92gWR0CjA74tpVS5dX2UKGgGaAloD0MIGM+goT+XcECUhpRSlGgVTS8BaBZHQKMES5wwTM91fZQoaAZoCWgPQwgZ/tMNVJBwQJSGlFKUaBVL6mgWR0CjBFvuogmrdX2UKGgGaAloD0MIY/IGmLlCcUCUhpRSlGgVS/toFkdAowSYzBRAKXV9lChoBmgJaA9DCBToE3kSynBAlIaUUpRoFUvyaBZHQKME6/xDst11fZQoaAZoCWgPQwjJBWfw9y5xQJSGlFKUaBVL3mgWR0CjBPxRuTA4dX2UKGgGaAloD0MIu2QcI9kOckCUhpRSlGgVTSsBaBZHQKMFBs67ulZ1fZQoaAZoCWgPQwhQGf8+o1VyQJSGlFKUaBVNKAFoFkdAowVsW69TP3V9lChoBmgJaA9DCPxUFRrIe3BAlIaUUpRoFUvsaBZHQKMFbuBtk4F1fZQoaAZoCWgPQwj6Cz1idGRxQJSGlFKUaBVNDwFoFkdAowWIRwqAjXV9lChoBmgJaA9DCCXqBZ9mYHBAlIaUUpRoFU0IAWgWR0CjBYiOearndX2UKGgGaAloD0MIl3SUg9lmb0CUhpRSlGgVS/VoFkdAowZx2U0N0HV9lChoBmgJaA9DCI+JlGazcHNAlIaUUpRoFUvjaBZHQKMGsF6Avtd1fZQoaAZoCWgPQwg6BfnZyPpvQJSGlFKUaBVNAAFoFkdAowdYGUwBYHV9lChoBmgJaA9DCMU4fxPKUnFAlIaUUpRoFU0RAWgWR0CjB5dycTakdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a471bfd6f0eaa6d46baa1655ca2f56cf21b844341c8af8078c990e4fc729b1db
|
3 |
+
size 144052
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6847d747a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6847d74830>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6847d748c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6847d74950>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6847d749e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6847d74a70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6847d74b00>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6847d74b90>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6847d74c20>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6847d74cb0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6847d74d40>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f6847daff60>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 802816,
|
46 |
+
"_total_timesteps": 800000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651713582.340361,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABe2jwsQ54/c7z8PVE5Bb8WMJk9Xj8OPQAAAAAAAAAAWsuvPW1oTj4kh7m9fHZ5vnTVvL3y9ya9AAAAAAAAAADNDBQ8qGCDP2+DmL13Keu+BM6Hu/Ayb70AAAAAAAAAABqPiz171qu6KlkDOFHo4DJoybC6jnwWtwAAgD8AAIA/AOCnO308Bz7rGpW8GTOZvr7dCr0b/TW8AAAAAAAAAAAa45k9IksNPiLIIj3NGWi+f4gVvSCExLwAAAAAAAAAANrIB76HelY+DquRPmLpib50b3s9iflAPQAAAAAAAAAAmqltPU9oPLz3l4g838SLPA7vtD2FqmS9AACAPwAAgD+NYuI9oZn2PrMi7b4CVIy+Kl2iPMuOq74AAAAAAAAAAIBMcT2ksGs4ZsYzM5sHZK5qUQi6tSPPswAAgD8AAIA/cwuFvUbpgz+UpRy+W37ovvdb+r1z2Wu9AAAAAAAAAADm2L49Re2wPPCeL71u5yu+aQt/vfi5Ez0AAAAAAAAAAOYxTT2ueZS6OVw8uo/ALbWvOhe6wyNaOQAAgD8AAIA/Goolvbiuwz2syBs+LCibvqJBhD1d8Fm9AAAAAAAAAADamoQ9ey6Hul/nIzfmvz4y8Yc/O9+AP7YAAIA/AACAP80A+D32nF87K1FLvckeD7yvYgU9Ye0AvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVVBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpBgg0YQQckCUhpRSlIwBbJRNHQGMAXSUR0Ci3+r/82rGdX2UKGgGaAloD0MIprc/F41sbkCUhpRSlGgVTQIBaBZHQKLgcPz4DcN1fZQoaAZoCWgPQwgIzEOmfIAiQJSGlFKUaBVLw2gWR0Ci4IOZ9d/sdX2UKGgGaAloD0MI+WhxxjDtckCUhpRSlGgVS+ZoFkdAouCK4UeuFHV9lChoBmgJaA9DCNV46SYx325AlIaUUpRoFU0AAWgWR0Ci4I704BFNdX2UKGgGaAloD0MI7bYLzXUmc0CUhpRSlGgVTQMBaBZHQKLg3CtzS1F1fZQoaAZoCWgPQwjqCUs8IM9sQJSGlFKUaBVL+mgWR0Ci4QcFhXr/dX2UKGgGaAloD0MIoRABhxCtckCUhpRSlGgVTRYBaBZHQKLhhTQVsUJ1fZQoaAZoCWgPQwhnCp3X2BpwQJSGlFKUaBVL5GgWR0Ci4Zg+IMz/dX2UKGgGaAloD0MIyf/k716MckCUhpRSlGgVS/JoFkdAouG7BEa2nnV9lChoBmgJaA9DCOnxe5v+C3BAlIaUUpRoFU0bAWgWR0Ci4dHCwbEQdX2UKGgGaAloD0MIf/W4bzWcckCUhpRSlGgVTT0BaBZHQKLh3ky1uzh1fZQoaAZoCWgPQwjtuUxNgj1xQJSGlFKUaBVNFgFoFkdAouJsfFJg9nV9lChoBmgJaA9DCPnzbcES+XBAlIaUUpRoFU0pAWgWR0Ci4qtKqXF+dX2UKGgGaAloD0MITn0geScockCUhpRSlGgVTU4BaBZHQKLi3F+/gzh1fZQoaAZoCWgPQwi+F1+0x1pvQJSGlFKUaBVNLAFoFkdAouPy2a2F4HV9lChoBmgJaA9DCA8pBkg0jWxAlIaUUpRoFUv7aBZHQKLkMV1wHZ91fZQoaAZoCWgPQwjcuMX8XPJxQJSGlFKUaBVNAgFoFkdAouTQdELH/HV9lChoBmgJaA9DCMhhMH/FPnJAlIaUUpRoFUv1aBZHQKLlBL127nR1fZQoaAZoCWgPQwio4zEDFVZyQJSGlFKUaBVNFQFoFkdAouVFfb9IgHV9lChoBmgJaA9DCFgczvxqMXFAlIaUUpRoFUvdaBZHQKLlSu2Zy+91fZQoaAZoCWgPQwirsu+KoFJzQJSGlFKUaBVL4mgWR0Ci5XOLaVUudX2UKGgGaAloD0MI0zB8RExZbkCUhpRSlGgVTQoBaBZHQKLlk1yeZoh1fZQoaAZoCWgPQwjIXYQpithwQJSGlFKUaBVNLwFoFkdAouXDK7qY7nV9lChoBmgJaA9DCE8hV+pZ6W9AlIaUUpRoFUvnaBZHQKLl0RoRIz51fZQoaAZoCWgPQwjWbrvQXOtuQJSGlFKUaBVNPgFoFkdAouX6fvnbI3V9lChoBmgJaA9DCCS2uwdoiG5AlIaUUpRoFUv/aBZHQKLmCghbGFV1fZQoaAZoCWgPQwjtRElIpIE5QJSGlFKUaBVLxGgWR0Ci5j8hkiD/dX2UKGgGaAloD0MIdqp8z0h4ckCUhpRSlGgVTRMBaBZHQKLmaD9Oymh1fZQoaAZoCWgPQwiP3nAfOfBwQJSGlFKUaBVNBgFoFkdAoubJ7zCk43V9lChoBmgJaA9DCLSR66bUFnFAlIaUUpRoFU0UAWgWR0Ci50CCz1K5dX2UKGgGaAloD0MIxCPx8nTRVUCUhpRSlGgVS6VoFkdAouehZyMkyHV9lChoBmgJaA9DCFyQLcvXoFFAlIaUUpRoFUvTaBZHQKLnrLf1pTN1fZQoaAZoCWgPQwiIE5hOa6BxQJSGlFKUaBVNCQFoFkdAouhQDJU5uXV9lChoBmgJaA9DCFFmg0wyJnNAlIaUUpRoFUv2aBZHQKLozruYx+N1fZQoaAZoCWgPQwg7jbRU3nhxQJSGlFKUaBVL5GgWR0Ci6OdYwIt2dX2UKGgGaAloD0MID9JT5JAFb0CUhpRSlGgVS/VoFkdAouljRjSXt3V9lChoBmgJaA9DCPD49q4BNXBAlIaUUpRoFU0JAWgWR0Ci90SQ5myxdX2UKGgGaAloD0MIXoWUn9S3cUCUhpRSlGgVTQQBaBZHQKL3dRsuWbB1fZQoaAZoCWgPQwimYmNeR3pxQJSGlFKUaBVL52gWR0Ci93o5xR2sdX2UKGgGaAloD0MIISI17WL+ckCUhpRSlGgVS9xoFkdAovf6++M6zXV9lChoBmgJaA9DCJoHsMjvVHFAlIaUUpRoFU0pAWgWR0Ci+BgT7EYPdX2UKGgGaAloD0MIxR1v8hu5ckCUhpRSlGgVTRgBaBZHQKL4IGh24d91fZQoaAZoCWgPQwhO1NLcijhvQJSGlFKUaBVNIAFoFkdAovgv2K2rn3V9lChoBmgJaA9DCJMANbVs+nBAlIaUUpRoFU1KAWgWR0Ci+C5QpF1CdX2UKGgGaAloD0MIzZTW3xJOcECUhpRSlGgVTSkBaBZHQKL4wx46fap1fZQoaAZoCWgPQwjLK9fbprJyQJSGlFKUaBVNAgFoFkdAovkGepXIVHV9lChoBmgJaA9DCF9AL9y5fG9AlIaUUpRoFUvqaBZHQKL5EdbxEv11fZQoaAZoCWgPQwiTcCGPYF9tQJSGlFKUaBVNBwFoFkdAovltaSs8xXV9lChoBmgJaA9DCLgiMUFN/HFAlIaUUpRoFUv8aBZHQKL55pxFRYR1fZQoaAZoCWgPQwiKlGbzOCFzQJSGlFKUaBVL3WgWR0Ci+e+717IDdX2UKGgGaAloD0MIqOUHrnIMbkCUhpRSlGgVTQABaBZHQKL6ZJAdGRV1fZQoaAZoCWgPQwhBYyZRb7RxQJSGlFKUaBVL6mgWR0Ci+ou27Wd3dX2UKGgGaAloD0MIICbhQh56cUCUhpRSlGgVS+doFkdAovrw5Jbt7nV9lChoBmgJaA9DCI+LahHRUW9AlIaUUpRoFUvgaBZHQKL7rg5zYEp1fZQoaAZoCWgPQwju68A5Iz1yQJSGlFKUaBVNDgFoFkdAovvXFHavinV9lChoBmgJaA9DCOsB85Cp/XBAlIaUUpRoFU0eAWgWR0Ci/B/Q0GeMdX2UKGgGaAloD0MIda29T9UgcUCUhpRSlGgVTQoBaBZHQKL8ahEBsAN1fZQoaAZoCWgPQwhtdM5PMY5yQJSGlFKUaBVNFQFoFkdAovx393r2QHV9lChoBmgJaA9DCC2Xjc45QHFAlIaUUpRoFUvoaBZHQKL8j2RJVbR1fZQoaAZoCWgPQwhFvHX+7c1yQJSGlFKUaBVNEAFoFkdAovyUeU6gd3V9lChoBmgJaA9DCPEQxk/js3BAlIaUUpRoFUvoaBZHQKL8z2icoYx1fZQoaAZoCWgPQwgujzUjg8VxQJSGlFKUaBVNKAFoFkdAovzZUgjhUHV9lChoBmgJaA9DCO85sBwhS3FAlIaUUpRoFU0AAWgWR0Ci/TD+aScLdX2UKGgGaAloD0MIPQ6D+St7VUCUhpRSlGgVS6hoFkdAov1bAFgUlHV9lChoBmgJaA9DCOKuXkXGEHBAlIaUUpRoFUv8aBZHQKL9gQ5FPSF1fZQoaAZoCWgPQwhsy4Cz1FlwQJSGlFKUaBVL/mgWR0Ci/opI1+AmdX2UKGgGaAloD0MIAMeePde3ckCUhpRSlGgVTTQBaBZHQKL+8oScslN1fZQoaAZoCWgPQwivCWmNAVxxQJSGlFKUaBVNOgFoFkdAov8cORT0hHV9lChoBmgJaA9DCFOUS+OXumxAlIaUUpRoFU0VAWgWR0Ci/5jynUDudX2UKGgGaAloD0MIbNECtK1IbUCUhpRSlGgVS/hoFkdAov/Od/axo3V9lChoBmgJaA9DCKZ7ndTXZHJAlIaUUpRoFUvXaBZHQKL/9bfxc3V1fZQoaAZoCWgPQwi0yeGTTu9xQJSGlFKUaBVNAAFoFkdAowBcglnh9HV9lChoBmgJaA9DCIqvdhRnLG5AlIaUUpRoFUvraBZHQKMAa+yquKZ1fZQoaAZoCWgPQwjc2OxIdXdtQJSGlFKUaBVNFAFoFkdAowB1mvnr6nV9lChoBmgJaA9DCAvxSLw8WXFAlIaUUpRoFU0NAWgWR0CjANcdo372dX2UKGgGaAloD0MIiNnLttO6R0CUhpRSlGgVS8toFkdAowD794u9OHV9lChoBmgJaA9DCKZ7ndQXdXNAlIaUUpRoFU0DAWgWR0CjARhYNiH7dX2UKGgGaAloD0MIINEEiljKcECUhpRSlGgVTRsBaBZHQKMBOMsH0K91fZQoaAZoCWgPQwh0YDlChoJyQJSGlFKUaBVL8mgWR0CjAWfcWTHKdX2UKGgGaAloD0MIPZ0rSgkzbkCUhpRSlGgVTToBaBZHQKMCZftQbdd1fZQoaAZoCWgPQwiez4B6swVzQJSGlFKUaBVL7WgWR0CjAv3yAhB7dX2UKGgGaAloD0MIEp87wf7rUkCUhpRSlGgVS79oFkdAowMAuK4x13V9lChoBmgJaA9DCKGd0yzQHG9AlIaUUpRoFU0LAWgWR0CjAyFQMx46dX2UKGgGaAloD0MIPKBsyhW4cUCUhpRSlGgVTX4BaBZHQKMDLLlmvnt1fZQoaAZoCWgPQwhFSUikrQdyQJSGlFKUaBVL92gWR0CjA74tpVS5dX2UKGgGaAloD0MIGM+goT+XcECUhpRSlGgVTS8BaBZHQKMES5wwTM91fZQoaAZoCWgPQwgZ/tMNVJBwQJSGlFKUaBVL6mgWR0CjBFvuogmrdX2UKGgGaAloD0MIY/IGmLlCcUCUhpRSlGgVS/toFkdAowSYzBRAKXV9lChoBmgJaA9DCBToE3kSynBAlIaUUpRoFUvyaBZHQKME6/xDst11fZQoaAZoCWgPQwjJBWfw9y5xQJSGlFKUaBVL3mgWR0CjBPxRuTA4dX2UKGgGaAloD0MIu2QcI9kOckCUhpRSlGgVTSsBaBZHQKMFBs67ulZ1fZQoaAZoCWgPQwhQGf8+o1VyQJSGlFKUaBVNKAFoFkdAowVsW69TP3V9lChoBmgJaA9DCPxUFRrIe3BAlIaUUpRoFUvsaBZHQKMFbuBtk4F1fZQoaAZoCWgPQwj6Cz1idGRxQJSGlFKUaBVNDwFoFkdAowWIRwqAjXV9lChoBmgJaA9DCCXqBZ9mYHBAlIaUUpRoFU0IAWgWR0CjBYiOearndX2UKGgGaAloD0MIl3SUg9lmb0CUhpRSlGgVS/VoFkdAowZx2U0N0HV9lChoBmgJaA9DCI+JlGazcHNAlIaUUpRoFUvjaBZHQKMGsF6Avtd1fZQoaAZoCWgPQwg6BfnZyPpvQJSGlFKUaBVNAAFoFkdAowdYGUwBYHV9lChoBmgJaA9DCMU4fxPKUnFAlIaUUpRoFU0RAWgWR0CjB5dycTakdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 320,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56c910201f82dce473ec057ab77b0ba8f20332274c4e825eb4fbaf1ed3ee8a39
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc6dd4d2459d235d93d6eb9c72224fa1a149771442aefa108493e92eeb5ebf19
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:736b51d34a8a0098464c16a36e53fef31539ba63de323208e86e989ae17b5855
|
3 |
+
size 207977
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 274.9719124955487, "std_reward": 13.754573995204746, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T01:41:39.182097"}
|