--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: Blockbuster Cuts Online Price, Challenges Netflix (Reuters) Reuters - Video chain Blockbuster Inc on\Friday said it would lower the price of its online DVD rentals\to undercut a similar move by Netflix Inc. that sparked a stock\a sell-off of both companies' shares. - text: Goss Gets Senate Panel's OK for CIA Post (AP) AP - A Senate panel on Tuesday approved the nomination of Rep. Porter Goss, R-Fla., to head the CIA, overcoming Democrats' objections that Goss was too political for the job. - text: 'Crazy Like a Firefox Today, the Mozilla Foundation #39;s Firefox browser officially launched -- welcome, version 1.0. In a way, it #39;s much ado about nothing, seeing how it wasn #39;t that long ago that we reported on how Mozilla had set ' - text: North Korea eases tough stance against US in nuclear talks North Korea on Friday eased its tough stance against the United States, saying it is willing to resume stalled six-way talks on its nuclear weapons if Washington is ready to consider its demands. - text: Mauresmo confident of LA victory Amelie Mauresmo insists she can win the Tour Championships this week and finish the year as world number one. The Frenchwoman could overtake Lindsay Davenport with a win in Los Angeles. pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.83 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 4 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 2 | | | 0 | | | 3 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.83 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("vidhi0206/setfit-paraphrase-mpnet-ag_news_v2") # Run inference preds = model("Mauresmo confident of LA victory Amelie Mauresmo insists she can win the Tour Championships this week and finish the year as world number one. The Frenchwoman could overtake Lindsay Davenport with a win in Los Angeles.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 15 | 37.375 | 64 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 16 | | 1 | 16 | | 2 | 16 | | 3 | 16 | ### Training Hyperparameters - batch_size: (8, 8) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0031 | 1 | 0.4374 | - | | 0.1562 | 50 | 0.1774 | - | | 0.3125 | 100 | 0.0287 | - | | 0.4688 | 150 | 0.0008 | - | | 0.625 | 200 | 0.0006 | - | | 0.7812 | 250 | 0.0002 | - | | 0.9375 | 300 | 0.0004 | - | ### Framework Versions - Python: 3.8.10 - SetFit: 1.0.3 - Sentence Transformers: 2.3.1 - Transformers: 4.37.2 - PyTorch: 2.2.0+cu121 - Datasets: 2.17.0 - Tokenizers: 0.15.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```