vikram-fresche
commited on
Commit
·
5a6c04a
1
Parent(s):
44a5e55
added custom handler v2
Browse files- handler.py +83 -45
handler.py
CHANGED
@@ -1,25 +1,44 @@
|
|
1 |
from typing import Dict, List, Any
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
class EndpointHandler:
|
6 |
def __init__(self, path: str = ""):
|
7 |
-
|
8 |
-
|
9 |
-
path
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
"
|
17 |
-
|
18 |
-
|
19 |
-
"
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, str]]:
|
25 |
"""Handle chat completion requests.
|
@@ -32,34 +51,53 @@ class EndpointHandler:
|
|
32 |
Returns:
|
33 |
List containing the generated response message
|
34 |
"""
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
output_tokens = self.model.generate(
|
55 |
-
**inputs,
|
56 |
-
**gen_params
|
57 |
)
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from typing import Dict, List, Any
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
+
import logging
|
5 |
+
|
6 |
+
# Configure logging
|
7 |
+
logging.basicConfig(
|
8 |
+
level=logging.INFO,
|
9 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
10 |
+
)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
|
13 |
class EndpointHandler:
|
14 |
def __init__(self, path: str = ""):
|
15 |
+
logger.info(f"Initializing EndpointHandler with model path: {path}")
|
16 |
+
try:
|
17 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
18 |
+
logger.info("Tokenizer loaded successfully")
|
19 |
+
|
20 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
path,
|
22 |
+
device_map="auto"
|
23 |
+
)
|
24 |
+
logger.info(f"Model loaded successfully. Device map: {self.model.device}")
|
25 |
+
|
26 |
+
self.model.eval()
|
27 |
+
logger.info("Model set to evaluation mode")
|
28 |
+
|
29 |
+
# Default generation parameters
|
30 |
+
self.default_params = {
|
31 |
+
"max_new_tokens": 100,
|
32 |
+
"temperature": 0.0,
|
33 |
+
"top_p": 0.9,
|
34 |
+
"top_k": 50,
|
35 |
+
"repetition_penalty": 1.1,
|
36 |
+
"do_sample": True
|
37 |
+
}
|
38 |
+
logger.info(f"Default generation parameters: {self.default_params}")
|
39 |
+
except Exception as e:
|
40 |
+
logger.error(f"Error during initialization: {str(e)}")
|
41 |
+
raise
|
42 |
|
43 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, str]]:
|
44 |
"""Handle chat completion requests.
|
|
|
51 |
Returns:
|
52 |
List containing the generated response message
|
53 |
"""
|
54 |
+
try:
|
55 |
+
logger.info("Processing new request")
|
56 |
+
logger.debug(f"Input data: {data}")
|
57 |
|
58 |
+
messages = data.get("messages", [])
|
59 |
+
if not messages:
|
60 |
+
logger.warning("No input messages provided")
|
61 |
+
return [{"role": "assistant", "content": "No input messages provided"}]
|
62 |
+
|
63 |
+
# Get generation parameters, use defaults for missing values
|
64 |
+
gen_params = {**self.default_params, **data.get("generation_params", {})}
|
65 |
+
logger.info(f"Generation parameters: {gen_params}")
|
66 |
+
|
67 |
+
# Apply the chat template
|
68 |
+
logger.debug("Applying chat template")
|
69 |
+
prompt = self.tokenizer.apply_chat_template(
|
70 |
+
messages,
|
71 |
+
tokenize=False,
|
72 |
+
add_generation_prompt=True
|
|
|
|
|
|
|
73 |
)
|
74 |
+
logger.debug(f"Generated prompt: {prompt}")
|
75 |
+
|
76 |
+
# Tokenize the prompt
|
77 |
+
logger.debug("Tokenizing input")
|
78 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
79 |
+
logger.debug(f"Input shape: {inputs.input_ids.shape}")
|
80 |
+
|
81 |
+
# Generate response
|
82 |
+
logger.info("Generating response")
|
83 |
+
with torch.no_grad():
|
84 |
+
output_tokens = self.model.generate(
|
85 |
+
**inputs,
|
86 |
+
**gen_params
|
87 |
+
)
|
88 |
+
logger.debug(f"Output shape: {output_tokens.shape}")
|
89 |
+
|
90 |
+
# Decode the response
|
91 |
+
logger.debug("Decoding response")
|
92 |
+
output_text = self.tokenizer.batch_decode(output_tokens)[0]
|
93 |
+
|
94 |
+
# Extract the assistant's response by removing the input prompt
|
95 |
+
response = output_text[len(prompt):].strip()
|
96 |
+
logger.info(f"Generated response length: {len(response)}")
|
97 |
+
logger.debug(f"Generated response: {response}")
|
98 |
+
|
99 |
+
return [{"role": "assistant", "content": response}]
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
logger.error(f"Error during generation: {str(e)}", exc_info=True)
|
103 |
+
raise
|