metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-dutch-fast-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice
type: common_voice
config: nl
split: test
args: nl
metrics:
- name: Wer
type: wer
value: 0.45272386997029984
wav2vec2-large-xls-r-300m-dutch-fast-colab
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.6524
- Wer: 0.4527
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.6663 | 0.82 | 200 | 2.9575 | 1.0 |
2.25 | 1.65 | 400 | 1.3191 | 0.8679 |
0.6388 | 2.47 | 600 | 0.9136 | 0.6240 |
0.3383 | 3.29 | 800 | 0.8049 | 0.5603 |
0.2091 | 4.12 | 1000 | 0.7214 | 0.4917 |
0.1356 | 4.94 | 1200 | 0.6524 | 0.4527 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3