File size: 1,986 Bytes
17bd393
 
 
 
403d2dc
 
17bd393
 
 
 
 
 
 
 
403d2dc
 
17bd393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403d2dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
base_model: klue/roberta-base
tags:
- generated_from_trainer
widget:
- text: 저는 김철수입니다. 집은 서울특별시 강남대로이고 전화번호는 010-1234-5678, 주민등록번호는 123456-1234567입니다.메일주소는 hugging@face.com입니다. 저는 10 25일에 출국할 예정입니다.
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: klue-roberta-base-ner-identified
  results: []
language:
- ko
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# klue-roberta-base-ner-identified

This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0167
- Precision: 0.9865
- Recall: 0.9938
- F1: 0.9901
- Accuracy: 0.9982

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 61   | 0.0293          | 0.9462    | 0.9802 | 0.9629 | 0.9954   |
| No log        | 2.0   | 122  | 0.0194          | 0.9901    | 0.9913 | 0.9907 | 0.9976   |
| No log        | 3.0   | 183  | 0.0167          | 0.9865    | 0.9938 | 0.9901 | 0.9982   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1