vladjr commited on
Commit
1c9d42e
1 Parent(s): f61d1e7

Training in progress epoch 0

Browse files
Files changed (7) hide show
  1. README.md +55 -0
  2. config.json +145 -0
  3. special_tokens_map.json +7 -0
  4. tf_model.h5 +3 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +55 -0
  7. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-uncased
4
+ tags:
5
+ - generated_from_keras_callback
6
+ model-index:
7
+ - name: vladjr/bert-full
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information Keras had access to. You should
12
+ probably proofread and complete it, then remove this comment. -->
13
+
14
+ # vladjr/bert-full
15
+
16
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Train Loss: 2.4206
19
+ - Validation Loss: 0.9155
20
+ - Train Accuracy: 0.9353
21
+ - Epoch: 0
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2900, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
41
+ - training_precision: float32
42
+
43
+ ### Training results
44
+
45
+ | Train Loss | Validation Loss | Train Accuracy | Epoch |
46
+ |:----------:|:---------------:|:--------------:|:-----:|
47
+ | 2.4206 | 0.9155 | 0.9353 | 0 |
48
+
49
+
50
+ ### Framework versions
51
+
52
+ - Transformers 4.34.1
53
+ - TensorFlow 2.13.0
54
+ - Datasets 2.14.5
55
+ - Tokenizers 0.14.1
config.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-uncased",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "Alternative Investment",
14
+ "1": "Appreciative Inquiry",
15
+ "2": "Artificial Intelligence",
16
+ "3": "Accounts Receivable",
17
+ "4": "Annual Review",
18
+ "5": "Applicant Tracking System",
19
+ "6": "Automated Trading System",
20
+ "7": "Career Advancement",
21
+ "8": "Chartered Accountant",
22
+ "9": "Customer Acquisition",
23
+ "10": "Career Pathing",
24
+ "11": "Commercial Paper",
25
+ "12": "Cost Per Mille",
26
+ "13": "Cost Per Million",
27
+ "14": "Credit Risk Management",
28
+ "15": "Customer Relationship Management",
29
+ "16": "Call to Action",
30
+ "17": "Commodity Trading Advisor",
31
+ "18": "Diversity, Equity, and Inclusion",
32
+ "19": "Dividend Equity Income",
33
+ "20": "Earnings Report",
34
+ "21": "Employee Relations",
35
+ "22": "Email Verification Process",
36
+ "23": "Employee Value Proposition",
37
+ "24": "Executive Vice President",
38
+ "25": "Marketing Automation",
39
+ "26": "Mergers & Acquisitions",
40
+ "27": "Management BuyOut",
41
+ "28": "Management By Objectives",
42
+ "29": "Performance Management",
43
+ "30": "Portfolio Manager",
44
+ "31": "Product Marketing",
45
+ "32": "Performance Review",
46
+ "33": "Public Relations",
47
+ "34": "Remarketing Audience",
48
+ "35": "Risk Assessment",
49
+ "36": "Return on Investment",
50
+ "37": "Return on Involvement",
51
+ "38": "Recruitment Process Outsourcing",
52
+ "39": "Request for Purchase Order",
53
+ "40": "Small and Medium-sized Enterprises",
54
+ "41": "Subject Matter Expert",
55
+ "42": "Annual Report ",
56
+ "43": "Canadian Dollar ",
57
+ "44": "computer-aided design ",
58
+ "45": "direct deposit ",
59
+ "46": "double booking ",
60
+ "47": "due date ",
61
+ "48": "millimeters ",
62
+ "49": "millions ",
63
+ "50": "message ",
64
+ "51": "monosodium glutamate ",
65
+ "52": "senior systems administrator ",
66
+ "53": "Social Security Administration ",
67
+ "54": "Workforce Now ",
68
+ "55": "World Federation of Neurology ",
69
+ "56": "you only live once ",
70
+ "57": "you only look once "
71
+ },
72
+ "initializer_range": 0.02,
73
+ "intermediate_size": 3072,
74
+ "label2id": {
75
+ "Accounts Receivable": 3,
76
+ "Alternative Investment": 0,
77
+ "Annual Report ": 42,
78
+ "Annual Review": 4,
79
+ "Applicant Tracking System": 5,
80
+ "Appreciative Inquiry": 1,
81
+ "Artificial Intelligence": 2,
82
+ "Automated Trading System": 6,
83
+ "Call to Action": 16,
84
+ "Canadian Dollar ": 43,
85
+ "Career Advancement": 7,
86
+ "Career Pathing": 10,
87
+ "Chartered Accountant": 8,
88
+ "Commercial Paper": 11,
89
+ "Commodity Trading Advisor": 17,
90
+ "Cost Per Mille": 12,
91
+ "Cost Per Million": 13,
92
+ "Credit Risk Management": 14,
93
+ "Customer Acquisition": 9,
94
+ "Customer Relationship Management": 15,
95
+ "Diversity, Equity, and Inclusion": 18,
96
+ "Dividend Equity Income": 19,
97
+ "Earnings Report": 20,
98
+ "Email Verification Process": 22,
99
+ "Employee Relations": 21,
100
+ "Employee Value Proposition": 23,
101
+ "Executive Vice President": 24,
102
+ "Management BuyOut": 27,
103
+ "Management By Objectives": 28,
104
+ "Marketing Automation": 25,
105
+ "Mergers & Acquisitions": 26,
106
+ "Performance Management": 29,
107
+ "Performance Review": 32,
108
+ "Portfolio Manager": 30,
109
+ "Product Marketing": 31,
110
+ "Public Relations": 33,
111
+ "Recruitment Process Outsourcing": 38,
112
+ "Remarketing Audience": 34,
113
+ "Request for Purchase Order": 39,
114
+ "Return on Investment": 36,
115
+ "Return on Involvement": 37,
116
+ "Risk Assessment": 35,
117
+ "Small and Medium-sized Enterprises": 40,
118
+ "Social Security Administration ": 53,
119
+ "Subject Matter Expert": 41,
120
+ "Workforce Now ": 54,
121
+ "World Federation of Neurology ": 55,
122
+ "computer-aided design ": 44,
123
+ "direct deposit ": 45,
124
+ "double booking ": 46,
125
+ "due date ": 47,
126
+ "message ": 50,
127
+ "millimeters ": 48,
128
+ "millions ": 49,
129
+ "monosodium glutamate ": 51,
130
+ "senior systems administrator ": 52,
131
+ "you only live once ": 56,
132
+ "you only look once ": 57
133
+ },
134
+ "layer_norm_eps": 1e-12,
135
+ "max_position_embeddings": 512,
136
+ "model_type": "bert",
137
+ "num_attention_heads": 12,
138
+ "num_hidden_layers": 12,
139
+ "pad_token_id": 0,
140
+ "position_embedding_type": "absolute",
141
+ "transformers_version": "4.34.1",
142
+ "type_vocab_size": 2,
143
+ "use_cache": true,
144
+ "vocab_size": 30522
145
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4dca04e270ec09ef8e74cf0671206a399d9c154765150032e11de6bb2313858
3
+ size 438395384
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff