--- license: mit base_model: vnktrmnb/xlm-roberta-base-FT-TyDiQA_AUQC tags: - generated_from_keras_callback model-index: - name: vnktrmnb/xlm-roberta-base-FT-TyDiQA_AUQC-FT-TyDiQA_AUQC results: [] --- # vnktrmnb/xlm-roberta-base-FT-TyDiQA_AUQC-FT-TyDiQA_AUQC This model is a fine-tuned version of [vnktrmnb/xlm-roberta-base-FT-TyDiQA_AUQC](https://huggingface.co/vnktrmnb/xlm-roberta-base-FT-TyDiQA_AUQC) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1588 - Train End Logits Accuracy: 0.9455 - Train Start Logits Accuracy: 0.9579 - Validation Loss: 0.6655 - Validation End Logits Accuracy: 0.8615 - Validation Start Logits Accuracy: 0.9035 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 9744, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.7982 | 0.7889 | 0.8252 | 0.4654 | 0.8587 | 0.9119 | 0 | | 0.6087 | 0.8296 | 0.8619 | 0.4771 | 0.8587 | 0.9063 | 1 | | 0.4630 | 0.8631 | 0.8954 | 0.5086 | 0.8671 | 0.9119 | 2 | | 0.3575 | 0.8913 | 0.9164 | 0.5528 | 0.8615 | 0.8993 | 3 | | 0.2690 | 0.9131 | 0.9313 | 0.5861 | 0.8545 | 0.9035 | 4 | | 0.2047 | 0.9312 | 0.9485 | 0.6629 | 0.8601 | 0.9021 | 5 | | 0.1588 | 0.9455 | 0.9579 | 0.6655 | 0.8615 | 0.9035 | 6 | ### Framework versions - Transformers 4.32.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3