File size: 2,545 Bytes
9978133 2f53638 8591459 2f53638 9978133 aaf61f8 8591459 2f53638 9978133 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_keras_callback
model-index:
- name: vnktrmnb/xlm-roberta-base-FT-TyDiQA_AUQC
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# vnktrmnb/xlm-roberta-base-FT-TyDiQA_AUQC
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.7421
- Train End Logits Accuracy: 0.8018
- Train Start Logits Accuracy: 0.8399
- Validation Loss: 0.4881
- Validation End Logits Accuracy: 0.8434
- Validation Start Logits Accuracy: 0.8909
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4176, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 1.7701 | 0.5788 | 0.6180 | 0.5240 | 0.8406 | 0.8811 | 0 |
| 0.9970 | 0.7439 | 0.7841 | 0.4812 | 0.8434 | 0.8979 | 1 |
| 0.7421 | 0.8018 | 0.8399 | 0.4881 | 0.8434 | 0.8909 | 2 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3
|