--- license: mit base_model: xlm-roberta-base tags: - generated_from_keras_callback model-index: - name: vnktrmnb/xlm-roberta-base-FT-TyDiQA_AUQC results: [] --- # vnktrmnb/xlm-roberta-base-FT-TyDiQA_AUQC This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7421 - Train End Logits Accuracy: 0.8018 - Train Start Logits Accuracy: 0.8399 - Validation Loss: 0.4881 - Validation End Logits Accuracy: 0.8434 - Validation Start Logits Accuracy: 0.8909 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4176, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.7701 | 0.5788 | 0.6180 | 0.5240 | 0.8406 | 0.8811 | 0 | | 0.9970 | 0.7439 | 0.7841 | 0.4812 | 0.8434 | 0.8979 | 1 | | 0.7421 | 0.8018 | 0.8399 | 0.4881 | 0.8434 | 0.8909 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3