File size: 16,083 Bytes
69dbbb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

import argparse
import logging
import math
import os
from datetime import datetime
import datasets
import torch
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import sys
import transformers
from accelerate import Accelerator, DistributedType
from shutil import copyfile
import wandb
import numpy as np

from transformers import (
    MODEL_MAPPING,
    AutoModelForMaskedLM,
    AutoTokenizer,
    DataCollatorForLanguageModeling,
    SchedulerType,
    get_scheduler
)
from transformers.utils.versions import require_version



class TrainDataset(torch.utils.data.IterableDataset):
    def __init__(self, filepath, tokenizer, max_length, batch_size, train_samples):
        self.tokenizer = tokenizer
        self.fIn = open(filepath)
        self.max_length = max_length
        self.batch_size = batch_size
        self.train_samples = train_samples

    def __iter__(self):
        batch = []
        for sent in self.fIn:
            batch.append(sent.strip()[0:1000])

            if len(batch) >= self.batch_size:
                #Use multi process tokenization
                encoded = self.tokenizer(batch, add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True, padding=True)
                #print(len(encoded['input_ids'][0]))
                for idx in range(len(batch)):
                    single_sample = {key: encoded[key][idx] for key in encoded}
                    yield single_sample
                
                batch = []

    def __len__(self):
        return self.train_samples

    



## Dev dataset
class DevDataset(torch.utils.data.Dataset):
    def __init__(self, filepath, tokenizer, max_length):
        self.tokenizer = tokenizer
        self.max_length = max_length
        with open(filepath) as fIn:
            sentences = [sent.strip() for sent in fIn]

        self.num_sentences = len(sentences)
        self.tokenized = self.tokenizer(sentences, add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True)

    def __getitem__(self, idx):
        return {key: self.tokenized[key][idx] for key in self.tokenized}

    def __len__(self):
        return self.num_sentences



logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


def parse_args():
    parser = argparse.ArgumentParser(description="Finetune a transformers model on a Masked Language Modeling task")
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The configuration name of the dataset to use (via the datasets library).",
    )
    parser.add_argument(
        "--train_file", type=str, default=None, help="A text file data (1 text per line).."
    )
    parser.add_argument(
        "--dev_file", type=str, default=None, help="A text file data (1 text per line)."
    )
    parser.add_argument(
        "--model_name",
        default="nicoladecao/msmarco-word2vec256000-distilbert-base-uncased",
        type=str,
        help="Path to pretrained model or model identifier from huggingface.co/models."
    )
    parser.add_argument(
        "--per_device_batch_size",
        type=int,
        default=16,
        help="Batch size (per device) for the training dataloader.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-5,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay to use.")
    parser.add_argument("--num_train_epochs", type=int, default=1, help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_train_steps",
        type=int,
        help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--lr_scheduler_type",
        type=SchedulerType,
        default="linear",
        help="The scheduler type to use.",
        choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
    )
    parser.add_argument(
        "--num_warmup_steps", type=int, default=1000, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--model_type",
        type=str,
        default=None,
        help="Model type to use if training from scratch.",
        choices=MODEL_TYPES,
    )
    parser.add_argument(
        "--max_seq_length",
        type=int,
        default=256,
        help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated.",
    )
    parser.add_argument(
        "--line_by_line",
        type=bool,
        default=True,
        help="Whether distinct lines of text in the dataset are to be handled as distinct sequences.",
    )
    parser.add_argument(
        "--overwrite_cache", type=bool, default=False, help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument(
        "--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss"
    )
    parser.add_argument("--mixed_precision", default="fp16")
    parser.add_argument("--train_samples", required=True, type=int)
    parser.add_argument("--eval_steps", default=10000, type=int)
    parser.add_argument("--max_grad_norm", default=1.0, type=float)
    parser.add_argument("--project", default="bert-word2vec")
    parser.add_argument("--freeze_emb_layer", default=False, action='store_true')
    parser.add_argument("--log_interval", default=1000, type=int)
    parser.add_argument("--ckp_steps", default=50000, type=int)

    args = parser.parse_args()


    return args


def main():
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    accelerator = Accelerator(mixed_precision=args.mixed_precision)
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state)

    # Setup logging, we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()


    accelerator.wait_for_everyone()


    #Load model
    tokenizer = AutoTokenizer.from_pretrained(args.model_name)
    model = AutoModelForMaskedLM.from_pretrained(args.model_name)

    #Freeze emb layer
    if args.freeze_emb_layer:
        model.distilbert.embeddings.word_embeddings.requires_grad_(False)
   
    # Logging & Co on main process
    if accelerator.is_main_process:
        exp_name = f'{args.model_name.replace("/", "-")}-{"freeze_emb" if args.freeze_emb_layer else "update_emb"}-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}'
        output_dir = os.path.join("output-mlm", exp_name)
        wandb.init(project=args.project, name=exp_name, config=args)

        os.makedirs(output_dir, exist_ok=False)

        #Save tokenizer
        tokenizer.save_pretrained(output_dir)

        #Save train script
        train_script_path = os.path.join(output_dir, 'train_script.py')
        copyfile(__file__, train_script_path)
        with open(train_script_path, 'a') as fOut:
            fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))


    total_batch_size = args.per_device_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    train_dataset = TrainDataset(args.train_file, tokenizer, args.max_seq_length, batch_size=total_batch_size, train_samples=args.train_samples)
    eval_dataset  = DevDataset(args.dev_file, tokenizer, args.max_seq_length)


    # Data collator
    # This one will take care of randomly masking the tokens.
    data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=args.mlm_probability)

    # DataLoaders creation:
    train_dataloader = DataLoader(train_dataset, collate_fn=data_collator, batch_size=args.per_device_batch_size)
    eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
        },
    ]
    optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(model, optimizer, train_dataloader, eval_dataloader)

    # On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
    if accelerator.distributed_type == DistributedType.TPU:
        model.tie_weights()

    # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
    # shorter in multiprocess)

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )


    # Train!
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {args.train_samples}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, smoothing=0.05)
    completed_steps = 0
    train_loss_values = []

    best_eval_loss = 999999
    if accelerator.is_main_process:
        best_ckp_dir = os.path.join(output_dir, "best")
        tokenizer.save_pretrained(best_ckp_dir)

    for epoch in range(args.num_train_epochs):
        logger.info(f"Start epoch {epoch}")
        model.train()
        for step, batch in enumerate(train_dataloader):
            outputs = model(**batch)
            loss = outputs.loss
            loss = loss / args.gradient_accumulation_steps
           
            if accelerator.is_main_process:
                train_loss_values.append(loss.cpu().item())

            accelerator.backward(loss)
            accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
            if step % args.gradient_accumulation_steps == 0:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

                 ### Do logging
                if accelerator.is_main_process:
                    if completed_steps % args.log_interval == 0:
                        wandb.log({"train/loss": np.mean(train_loss_values)}, step=completed_steps)
                        train_loss_values = []

           
                if completed_steps % args.eval_steps == 0:
                    model.eval()
                    losses = []
                    for step, batch in enumerate(eval_dataloader):
                        with torch.no_grad():
                            outputs = model(**batch)

                        loss = outputs.loss
                        losses.append(accelerator.gather(loss.repeat(args.per_device_batch_size)))

                    losses = torch.cat(losses)
                    losses = losses[: len(eval_dataset)]
                    try:
                        eval_loss = torch.mean(losses)
                    except OverflowError:
                        eval_loss = float("inf")

                    logger.info(f"step {completed_steps}: perplexity: {eval_loss}")
                    if accelerator.is_main_process:
                        wandb.log({"eval/loss": eval_loss}, step=completed_steps)

                    model.train()

                    #Save model
                    accelerator.wait_for_everyone()
                    if accelerator.is_main_process:
                        unwrapped_model = accelerator.unwrap_model(model)
                        unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)
                        with open(os.path.join(output_dir, "train_steps.log"), 'a') as fOut:
                            fOut.write(f"{completed_steps}: {eval_loss}\n")

                        #Save best model
                        if eval_loss < best_eval_loss:
                            best_eval_loss = eval_loss
                            unwrapped_model.save_pretrained(best_ckp_dir, save_function=accelerator.save)
                            with open(os.path.join(best_ckp_dir, "train_steps.log"), 'a') as fOut:
                                fOut.write(f"{completed_steps}: {eval_loss}\n")
                        
                if accelerator.is_main_process and completed_steps % args.ckp_steps == 0:
                    ckp_dir = os.path.join(output_dir, f"ckp-{int(completed_steps/1000)}k")
                    unwrapped_model = accelerator.unwrap_model(model)
                    unwrapped_model.save_pretrained(ckp_dir, save_function=accelerator.save)
                    tokenizer.save_pretrained(ckp_dir)
                    with open(os.path.join(ckp_dir, "train_steps.log"), 'a') as fOut:
                        fOut.write(f"{completed_steps}: {eval_loss}\n")
                   
            
                if completed_steps >= args.max_train_steps:
                    break

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        if accelerator.is_main_process:
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)
            with open(os.path.join(output_dir, "train_steps.log"), 'a') as fOut:
                fOut.write(f"{completed_steps}\n")
        



if __name__ == "__main__":
    main()


# Script was called via:
#python train_mlm-iterable.py --train_file data/c4_msmarco_news_s2orc_wiki_train.txt --dev_file data/c4_msmarco_news_s2orc_wiki_dev.txt --train_samples 100000000 --model_name train-w2v-model/c4_msmarco_news_s2orc_wiki/distilbert-256k/ --freeze_emb_layer