asahi417 commited on
Commit
c44227a
1 Parent(s): 0c93fd6

commit files to HF hub

Browse files
README.md CHANGED
@@ -31,33 +31,33 @@ model-index:
31
  metrics:
32
  - name: BLEU4 (Question Answering)
33
  type: bleu4_question_answering
34
- value: 0.26
35
  - name: ROUGE-L (Question Answering)
36
  type: rouge_l_question_answering
37
- value: 5.07
38
  - name: METEOR (Question Answering)
39
  type: meteor_question_answering
40
- value: 4.06
41
  - name: BERTScore (Question Answering)
42
  type: bertscore_question_answering
43
- value: 76.56
44
  - name: MoverScore (Question Answering)
45
  type: moverscore_question_answering
46
- value: 54.15
47
  - name: AnswerF1Score (Question Answering)
48
  type: answer_f1_score__question_answering
49
- value: 5.34
50
  - name: AnswerExactMatch (Question Answering)
51
  type: answer_exact_match_question_answering
52
- value: 0.15
53
  ---
54
 
55
  # Model Card of `vocabtrimmer/mt5-small-trimmed-es-120000-esquad-qa`
56
- This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-es-120000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-120000) for question answering task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
57
 
58
 
59
  ### Overview
60
- - **Language model:** [vocabtrimmer/mt5-small-trimmed-es-120000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-120000)
61
  - **Language:** es
62
  - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default)
63
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
@@ -93,16 +93,16 @@ output = pipe("question: ¿Cuál es la población de Nueva York a partir de 2014
93
 
94
  | | Score | Type | Dataset |
95
  |:-----------------|--------:|:--------|:-----------------------------------------------------------------|
96
- | AnswerExactMatch | 0.15 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
97
- | AnswerF1Score | 5.34 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
98
- | BERTScore | 76.56 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
99
- | Bleu_1 | 5.14 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
100
- | Bleu_2 | 2 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
101
- | Bleu_3 | 0.64 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
102
- | Bleu_4 | 0.26 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
103
- | METEOR | 4.06 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
104
- | MoverScore | 54.15 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
105
- | ROUGE_L | 5.07 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
106
 
107
 
108
 
@@ -114,7 +114,7 @@ The following hyperparameters were used during fine-tuning:
114
  - input_types: ['paragraph_question']
115
  - output_types: ['answer']
116
  - prefix_types: None
117
- - model: vocabtrimmer/mt5-small-trimmed-es-120000
118
  - max_length: 512
119
  - max_length_output: 32
120
  - epoch: 13
 
31
  metrics:
32
  - name: BLEU4 (Question Answering)
33
  type: bleu4_question_answering
34
+ value: 10.86
35
  - name: ROUGE-L (Question Answering)
36
  type: rouge_l_question_answering
37
+ value: 32.96
38
  - name: METEOR (Question Answering)
39
  type: meteor_question_answering
40
+ value: 27.37
41
  - name: BERTScore (Question Answering)
42
  type: bertscore_question_answering
43
+ value: 89.27
44
  - name: MoverScore (Question Answering)
45
  type: moverscore_question_answering
46
+ value: 72.16
47
  - name: AnswerF1Score (Question Answering)
48
  type: answer_f1_score__question_answering
49
+ value: 51.98
50
  - name: AnswerExactMatch (Question Answering)
51
  type: answer_exact_match_question_answering
52
+ value: 32.69
53
  ---
54
 
55
  # Model Card of `vocabtrimmer/mt5-small-trimmed-es-120000-esquad-qa`
56
+ This model is fine-tuned version of [ckpts/mt5-small-trimmed-es-120000](https://huggingface.co/ckpts/mt5-small-trimmed-es-120000) for question answering task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
57
 
58
 
59
  ### Overview
60
+ - **Language model:** [ckpts/mt5-small-trimmed-es-120000](https://huggingface.co/ckpts/mt5-small-trimmed-es-120000)
61
  - **Language:** es
62
  - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default)
63
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
 
93
 
94
  | | Score | Type | Dataset |
95
  |:-----------------|--------:|:--------|:-----------------------------------------------------------------|
96
+ | AnswerExactMatch | 32.69 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
97
+ | AnswerF1Score | 51.98 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
98
+ | BERTScore | 89.27 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
99
+ | Bleu_1 | 19.26 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
100
+ | Bleu_2 | 15.44 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
101
+ | Bleu_3 | 12.86 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
102
+ | Bleu_4 | 10.86 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
103
+ | METEOR | 27.37 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
104
+ | MoverScore | 72.16 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
105
+ | ROUGE_L | 32.96 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
106
 
107
 
108
 
 
114
  - input_types: ['paragraph_question']
115
  - output_types: ['answer']
116
  - prefix_types: None
117
+ - model: ckpts/mt5-small-trimmed-es-120000
118
  - max_length: 512
119
  - max_length_output: 32
120
  - epoch: 13
eval/metric.first.answer.paragraph_question.answer.lmqg_qg_esquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.048113843918637815, "Bleu_2": 0.01828043070344086, "Bleu_3": 0.00582008540874681, "Bleu_4": 0.002437747697963735, "METEOR": 0.03964517429607143, "ROUGE_L": 0.04827130396486276, "BERTScore": 0.763451451762397, "MoverScore": 0.5380351567717591, "AnswerF1Score": 5.227023744822982, "AnswerExactMatch": 0.08514664143803216}, "test": {"Bleu_1": 0.051426516422919476, "Bleu_2": 0.02000500311186099, "Bleu_3": 0.00642910854573143, "Bleu_4": 0.002572610536178843, "METEOR": 0.04057042403571312, "ROUGE_L": 0.0506905582369857, "BERTScore": 0.765626825746096, "MoverScore": 0.541489252159526, "AnswerF1Score": 5.343118049203916, "AnswerExactMatch": 0.15137180700094607}}
 
1
+ {"validation": {"Bleu_1": 0.18079044327985694, "Bleu_2": 0.1449656163333011, "Bleu_3": 0.12016447104697779, "Bleu_4": 0.1012333017635512, "METEOR": 0.2743819912333638, "ROUGE_L": 0.32503903032920056, "BERTScore": 0.8877847232453194, "MoverScore": 0.7104356231217992, "AnswerF1Score": 50.330330517230394, "AnswerExactMatch": 30.10406811731315}, "test": {"Bleu_1": 0.19260139980142685, "Bleu_2": 0.1543940365517117, "Bleu_3": 0.12857198295787745, "Bleu_4": 0.10862072863046543, "METEOR": 0.27374490288657943, "ROUGE_L": 0.32960578305105337, "BERTScore": 0.8927442957966985, "MoverScore": 0.7216287130613068, "AnswerF1Score": 51.983696370363326, "AnswerExactMatch": 32.686849574266795}}
eval/samples.test.hyp.paragraph_question.answer.lmqg_qg_esquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_question.answer.lmqg_qg_esquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff