asahi417 commited on
Commit
adefb49
1 Parent(s): 42b0139

commit files to HF hub

Browse files
README.md CHANGED
@@ -31,33 +31,33 @@ model-index:
31
  metrics:
32
  - name: BLEU4 (Question Answering)
33
  type: bleu4_question_answering
34
- value: 0.0
35
  - name: ROUGE-L (Question Answering)
36
  type: rouge_l_question_answering
37
- value: 0.09
38
  - name: METEOR (Question Answering)
39
  type: meteor_question_answering
40
- value: 0.23
41
  - name: BERTScore (Question Answering)
42
  type: bertscore_question_answering
43
- value: 70.44
44
  - name: MoverScore (Question Answering)
45
  type: moverscore_question_answering
46
- value: 52.74
47
  - name: AnswerF1Score (Question Answering)
48
  type: answer_f1_score__question_answering
49
- value: 0.11
50
  - name: AnswerExactMatch (Question Answering)
51
  type: answer_exact_match_question_answering
52
- value: 0.03
53
  ---
54
 
55
  # Model Card of `vocabtrimmer/mt5-small-trimmed-es-15000-esquad-qa`
56
- This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-es-15000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-15000) for question answering task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
57
 
58
 
59
  ### Overview
60
- - **Language model:** [vocabtrimmer/mt5-small-trimmed-es-15000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-15000)
61
  - **Language:** es
62
  - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default)
63
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
@@ -93,16 +93,16 @@ output = pipe("question: ¿Cuál es la población de Nueva York a partir de 2014
93
 
94
  | | Score | Type | Dataset |
95
  |:-----------------|--------:|:--------|:-----------------------------------------------------------------|
96
- | AnswerExactMatch | 0.03 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
97
- | AnswerF1Score | 0.11 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
98
- | BERTScore | 70.44 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
99
- | Bleu_1 | 0.11 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
100
- | Bleu_2 | 0 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
101
- | Bleu_3 | 0 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
102
- | Bleu_4 | 0 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
103
- | METEOR | 0.23 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
104
- | MoverScore | 52.74 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
105
- | ROUGE_L | 0.09 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
106
 
107
 
108
 
@@ -114,7 +114,7 @@ The following hyperparameters were used during fine-tuning:
114
  - input_types: ['paragraph_question']
115
  - output_types: ['answer']
116
  - prefix_types: None
117
- - model: vocabtrimmer/mt5-small-trimmed-es-15000
118
  - max_length: 512
119
  - max_length_output: 32
120
  - epoch: 14
 
31
  metrics:
32
  - name: BLEU4 (Question Answering)
33
  type: bleu4_question_answering
34
+ value: 18.17
35
  - name: ROUGE-L (Question Answering)
36
  type: rouge_l_question_answering
37
+ value: 38.1
38
  - name: METEOR (Question Answering)
39
  type: meteor_question_answering
40
+ value: 33.21
41
  - name: BERTScore (Question Answering)
42
  type: bertscore_question_answering
43
+ value: 91.62
44
  - name: MoverScore (Question Answering)
45
  type: moverscore_question_answering
46
+ value: 76.82
47
  - name: AnswerF1Score (Question Answering)
48
  type: answer_f1_score__question_answering
49
+ value: 62.16
50
  - name: AnswerExactMatch (Question Answering)
51
  type: answer_exact_match_question_answering
52
+ value: 41.45
53
  ---
54
 
55
  # Model Card of `vocabtrimmer/mt5-small-trimmed-es-15000-esquad-qa`
56
+ This model is fine-tuned version of [ckpts/mt5-small-trimmed-es-15000](https://huggingface.co/ckpts/mt5-small-trimmed-es-15000) for question answering task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
57
 
58
 
59
  ### Overview
60
+ - **Language model:** [ckpts/mt5-small-trimmed-es-15000](https://huggingface.co/ckpts/mt5-small-trimmed-es-15000)
61
  - **Language:** es
62
  - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default)
63
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
 
93
 
94
  | | Score | Type | Dataset |
95
  |:-----------------|--------:|:--------|:-----------------------------------------------------------------|
96
+ | AnswerExactMatch | 41.45 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
97
+ | AnswerF1Score | 62.16 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
98
+ | BERTScore | 91.62 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
99
+ | Bleu_1 | 28.53 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
100
+ | Bleu_2 | 23.91 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
101
+ | Bleu_3 | 20.72 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
102
+ | Bleu_4 | 18.17 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
103
+ | METEOR | 33.21 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
104
+ | MoverScore | 76.82 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
105
+ | ROUGE_L | 38.1 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
106
 
107
 
108
 
 
114
  - input_types: ['paragraph_question']
115
  - output_types: ['answer']
116
  - prefix_types: None
117
+ - model: ckpts/mt5-small-trimmed-es-15000
118
  - max_length: 512
119
  - max_length_output: 32
120
  - epoch: 14
eval/metric.first.answer.paragraph_question.answer.lmqg_qg_esquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.001004352192835611, "Bleu_2": 0.00010461696464441498, "Bleu_3": 5.099887755116005e-10, "Bleu_4": 1.156316714724265e-12, "METEOR": 0.0020535579790744705, "ROUGE_L": 0.001018285123475979, "BERTScore": 0.7129212742835255, "MoverScore": 0.5258865046147834, "AnswerF1Score": 0.1094663389985188, "AnswerExactMatch": 0.0}, "test": {"Bleu_1": 0.0011051068100939735, "Bleu_2": 3.5244397866600116e-12, "Bleu_3": 5.37736898747529e-15, "Bleu_4": 2.157958293940156e-16, "METEOR": 0.0022891187205383093, "ROUGE_L": 0.0009444767193886489, "BERTScore": 0.7044496615426994, "MoverScore": 0.5273608724144386, "AnswerF1Score": 0.11371334603918257, "AnswerExactMatch": 0.02838221381267739}}
 
1
+ {"validation": {"Bleu_1": 0.26373484236054545, "Bleu_2": 0.2186777098857219, "Bleu_3": 0.18705861160620701, "Bleu_4": 0.16193034837860076, "METEOR": 0.32464668075595776, "ROUGE_L": 0.37181959261044173, "BERTScore": 0.9106625634087857, "MoverScore": 0.7543081392585878, "AnswerF1Score": 59.784639937544505, "AnswerExactMatch": 38.54304635761589}, "test": {"Bleu_1": 0.28526070937398706, "Bleu_2": 0.2390707992690809, "Bleu_3": 0.20720178563616617, "Bleu_4": 0.18169954477694708, "METEOR": 0.3320529393361048, "ROUGE_L": 0.38100050149610076, "BERTScore": 0.9161858492959978, "MoverScore": 0.7682198922921386, "AnswerF1Score": 62.16410905553706, "AnswerExactMatch": 41.44749290444655}}
eval/samples.test.hyp.paragraph_question.answer.lmqg_qg_esquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_question.answer.lmqg_qg_esquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff