Edit model card

Model Card of vocabtrimmer/mt5-small-trimmed-es-5000-esquad-qg

This model is fine-tuned version of vocabtrimmer/mt5-small-trimmed-es-5000 for question generation task on the lmqg/qg_esquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="es", model="vocabtrimmer/mt5-small-trimmed-es-5000-esquad-qg")

# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-es-5000-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")

Evaluation

Score Type Dataset
BERTScore 84.07 default lmqg/qg_esquad
Bleu_1 25.67 default lmqg/qg_esquad
Bleu_2 17.4 default lmqg/qg_esquad
Bleu_3 12.59 default lmqg/qg_esquad
Bleu_4 9.41 default lmqg/qg_esquad
METEOR 21.88 default lmqg/qg_esquad
MoverScore 58.84 default lmqg/qg_esquad
ROUGE_L 23.51 default lmqg/qg_esquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_esquad
  • dataset_name: default
  • input_types: paragraph_answer
  • output_types: question
  • prefix_types: None
  • model: vocabtrimmer/mt5-small-trimmed-es-5000
  • max_length: 512
  • max_length_output: 32
  • epoch: 12
  • batch: 16
  • lr: 0.001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 4
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train vocabtrimmer/mt5-small-trimmed-es-5000-esquad-qg

Evaluation results