voxxer commited on
Commit
a91bc6f
1 Parent(s): c265dd9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ru
4
+ license: mit
5
+ base_model: microsoft/speecht5_tts
6
+ tags:
7
+ - generated_from_trainer
8
+ datasets:
9
+ - mozilla-foundation/common_voice_13_0
10
+ model-index:
11
+ - name: SpeechT5 - Russian translit
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # SpeechT5 - Russian translit
19
+
20
+ This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the Common Voice 13 dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.4853
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 1e-05
42
+ - train_batch_size: 8
43
+ - eval_batch_size: 2
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 8
46
+ - total_train_batch_size: 64
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_steps: 400
50
+ - training_steps: 2000
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss |
55
+ |:-------------:|:-----:|:----:|:---------------:|
56
+ | 1.0359 | 0.6 | 50 | 0.8176 |
57
+ | 0.8866 | 1.19 | 100 | 0.6899 |
58
+ | 0.787 | 1.79 | 150 | 0.6478 |
59
+ | 0.7477 | 2.38 | 200 | 0.6233 |
60
+ | 0.6734 | 2.98 | 250 | 0.5630 |
61
+ | 0.6216 | 3.58 | 300 | 0.5429 |
62
+ | 0.593 | 4.17 | 350 | 0.5304 |
63
+ | 0.5817 | 4.77 | 400 | 0.5282 |
64
+ | 0.5734 | 5.37 | 450 | 0.5167 |
65
+ | 0.5688 | 5.96 | 500 | 0.5209 |
66
+ | 0.5662 | 6.56 | 550 | 0.5095 |
67
+ | 0.5609 | 7.15 | 600 | 0.5127 |
68
+ | 0.554 | 7.75 | 650 | 0.5041 |
69
+ | 0.5522 | 8.35 | 700 | 0.5038 |
70
+ | 0.5372 | 8.94 | 750 | 0.4984 |
71
+ | 0.5432 | 9.54 | 800 | 0.4995 |
72
+ | 0.5384 | 10.13 | 850 | 0.4971 |
73
+ | 0.5345 | 10.73 | 900 | 0.4981 |
74
+ | 0.5358 | 11.33 | 950 | 0.4942 |
75
+ | 0.5332 | 11.92 | 1000 | 0.4906 |
76
+ | 0.5334 | 12.52 | 1050 | 0.4897 |
77
+ | 0.5301 | 13.11 | 1100 | 0.4914 |
78
+ | 0.5298 | 13.71 | 1150 | 0.4894 |
79
+ | 0.524 | 14.31 | 1200 | 0.4871 |
80
+ | 0.5221 | 14.9 | 1250 | 0.4884 |
81
+ | 0.525 | 15.5 | 1300 | 0.4883 |
82
+ | 0.5232 | 16.1 | 1350 | 0.4866 |
83
+ | 0.5261 | 16.69 | 1400 | 0.4858 |
84
+ | 0.521 | 17.29 | 1450 | 0.4852 |
85
+ | 0.5225 | 17.88 | 1500 | 0.4849 |
86
+ | 0.5219 | 18.48 | 1550 | 0.4860 |
87
+ | 0.5207 | 19.08 | 1600 | 0.4839 |
88
+ | 0.5192 | 19.67 | 1650 | 0.4851 |
89
+ | 0.516 | 20.27 | 1700 | 0.4860 |
90
+ | 0.5186 | 20.86 | 1750 | 0.4811 |
91
+ | 0.5233 | 21.46 | 1800 | 0.4841 |
92
+ | 0.5145 | 22.06 | 1850 | 0.4819 |
93
+ | 0.5159 | 22.65 | 1900 | 0.4822 |
94
+ | 0.5146 | 23.25 | 1950 | 0.4831 |
95
+ | 0.5175 | 23.85 | 2000 | 0.4853 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.31.0
101
+ - Pytorch 2.0.1+cu118
102
+ - Datasets 2.14.4
103
+ - Tokenizers 0.13.3