File size: 11,382 Bytes
c721c7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
{
  "best_metric": 0.8919400441736002,
  "best_model_checkpoint": "cls_comment-phobert-base-v2-v2.4/checkpoint-1500",
  "epoch": 19.138755980861244,
  "eval_steps": 100,
  "global_step": 2000,
  "is_hyper_param_search": false,
  "is_local_process_zero": true,
  "is_world_process_zero": true,
  "log_history": [
    {
      "epoch": 0.96,
      "grad_norm": 1.4111480712890625,
      "learning_rate": 2.5e-06,
      "loss": 1.7008,
      "step": 100
    },
    {
      "epoch": 0.96,
      "eval_accuracy": 0.46234623462346236,
      "eval_f1_score": 0.10914902653284753,
      "eval_loss": 1.5259455442428589,
      "eval_precision": 0.22956187895212285,
      "eval_recall": 0.16870144284128744,
      "eval_runtime": 5.8062,
      "eval_samples_per_second": 574.041,
      "eval_steps_per_second": 9.128,
      "step": 100
    },
    {
      "epoch": 1.91,
      "grad_norm": 3.172757148742676,
      "learning_rate": 5e-06,
      "loss": 1.4089,
      "step": 200
    },
    {
      "epoch": 1.91,
      "eval_accuracy": 0.6567656765676567,
      "eval_f1_score": 0.24987557712552566,
      "eval_loss": 1.1875011920928955,
      "eval_precision": 0.216976056542887,
      "eval_recall": 0.2948041271015744,
      "eval_runtime": 6.0549,
      "eval_samples_per_second": 550.46,
      "eval_steps_per_second": 8.753,
      "step": 200
    },
    {
      "epoch": 2.87,
      "grad_norm": 4.23789644241333,
      "learning_rate": 7.500000000000001e-06,
      "loss": 1.0776,
      "step": 300
    },
    {
      "epoch": 2.87,
      "eval_accuracy": 0.8037803780378038,
      "eval_f1_score": 0.5304195101025111,
      "eval_loss": 0.9009036421775818,
      "eval_precision": 0.5333440517242575,
      "eval_recall": 0.5308669916547205,
      "eval_runtime": 6.0211,
      "eval_samples_per_second": 553.553,
      "eval_steps_per_second": 8.802,
      "step": 300
    },
    {
      "epoch": 3.83,
      "grad_norm": 2.9036450386047363,
      "learning_rate": 1e-05,
      "loss": 0.8625,
      "step": 400
    },
    {
      "epoch": 3.83,
      "eval_accuracy": 0.8574857485748575,
      "eval_f1_score": 0.6321452494594356,
      "eval_loss": 0.7617138624191284,
      "eval_precision": 0.7107045568063487,
      "eval_recall": 0.6372368264036259,
      "eval_runtime": 6.0254,
      "eval_samples_per_second": 553.154,
      "eval_steps_per_second": 8.796,
      "step": 400
    },
    {
      "epoch": 4.78,
      "grad_norm": 4.648315906524658,
      "learning_rate": 9.722222222222223e-06,
      "loss": 0.7245,
      "step": 500
    },
    {
      "epoch": 4.78,
      "eval_accuracy": 0.8817881788178817,
      "eval_f1_score": 0.7282115691268598,
      "eval_loss": 0.689365804195404,
      "eval_precision": 0.8802547295767839,
      "eval_recall": 0.7213609117839314,
      "eval_runtime": 6.0362,
      "eval_samples_per_second": 552.166,
      "eval_steps_per_second": 8.78,
      "step": 500
    },
    {
      "epoch": 5.74,
      "grad_norm": 5.482232093811035,
      "learning_rate": 9.444444444444445e-06,
      "loss": 0.6573,
      "step": 600
    },
    {
      "epoch": 5.74,
      "eval_accuracy": 0.8967896789678967,
      "eval_f1_score": 0.8406229534596467,
      "eval_loss": 0.6651212573051453,
      "eval_precision": 0.8770203982052687,
      "eval_recall": 0.8212623271516084,
      "eval_runtime": 6.089,
      "eval_samples_per_second": 547.376,
      "eval_steps_per_second": 8.704,
      "step": 600
    },
    {
      "epoch": 6.7,
      "grad_norm": 4.107127666473389,
      "learning_rate": 9.166666666666666e-06,
      "loss": 0.6082,
      "step": 700
    },
    {
      "epoch": 6.7,
      "eval_accuracy": 0.9078907890789079,
      "eval_f1_score": 0.8629840378859187,
      "eval_loss": 0.6335443258285522,
      "eval_precision": 0.8594850910270425,
      "eval_recall": 0.866740275628739,
      "eval_runtime": 6.012,
      "eval_samples_per_second": 554.389,
      "eval_steps_per_second": 8.816,
      "step": 700
    },
    {
      "epoch": 7.66,
      "grad_norm": 4.067190647125244,
      "learning_rate": 8.888888888888888e-06,
      "loss": 0.5674,
      "step": 800
    },
    {
      "epoch": 7.66,
      "eval_accuracy": 0.9105910591059105,
      "eval_f1_score": 0.8692050710637084,
      "eval_loss": 0.636346697807312,
      "eval_precision": 0.8621114850690574,
      "eval_recall": 0.8795216165515357,
      "eval_runtime": 6.0275,
      "eval_samples_per_second": 552.965,
      "eval_steps_per_second": 8.793,
      "step": 800
    },
    {
      "epoch": 8.61,
      "grad_norm": 3.8194425106048584,
      "learning_rate": 8.611111111111112e-06,
      "loss": 0.5477,
      "step": 900
    },
    {
      "epoch": 8.61,
      "eval_accuracy": 0.9150915091509151,
      "eval_f1_score": 0.8776204392865118,
      "eval_loss": 0.6268996596336365,
      "eval_precision": 0.8876632968569648,
      "eval_recall": 0.8693279668307071,
      "eval_runtime": 5.982,
      "eval_samples_per_second": 557.174,
      "eval_steps_per_second": 8.86,
      "step": 900
    },
    {
      "epoch": 9.57,
      "grad_norm": 4.406583309173584,
      "learning_rate": 8.333333333333334e-06,
      "loss": 0.5256,
      "step": 1000
    },
    {
      "epoch": 9.57,
      "eval_accuracy": 0.9204920492049204,
      "eval_f1_score": 0.8834661339438045,
      "eval_loss": 0.6178370714187622,
      "eval_precision": 0.8826304228202296,
      "eval_recall": 0.8848781731721993,
      "eval_runtime": 6.0125,
      "eval_samples_per_second": 554.349,
      "eval_steps_per_second": 8.815,
      "step": 1000
    },
    {
      "epoch": 10.53,
      "grad_norm": 3.69624400138855,
      "learning_rate": 8.055555555555557e-06,
      "loss": 0.5148,
      "step": 1100
    },
    {
      "epoch": 10.53,
      "eval_accuracy": 0.9198919891989199,
      "eval_f1_score": 0.879559155366957,
      "eval_loss": 0.6214434504508972,
      "eval_precision": 0.8761821574730276,
      "eval_recall": 0.8838583582269935,
      "eval_runtime": 6.0361,
      "eval_samples_per_second": 552.174,
      "eval_steps_per_second": 8.78,
      "step": 1100
    },
    {
      "epoch": 11.48,
      "grad_norm": 4.3708343505859375,
      "learning_rate": 7.77777777777778e-06,
      "loss": 0.4999,
      "step": 1200
    },
    {
      "epoch": 11.48,
      "eval_accuracy": 0.9228922892289229,
      "eval_f1_score": 0.8856181382103513,
      "eval_loss": 0.6158125400543213,
      "eval_precision": 0.8862286567723959,
      "eval_recall": 0.8853146392819923,
      "eval_runtime": 5.9971,
      "eval_samples_per_second": 555.768,
      "eval_steps_per_second": 8.838,
      "step": 1200
    },
    {
      "epoch": 12.44,
      "grad_norm": 5.073043346405029,
      "learning_rate": 7.500000000000001e-06,
      "loss": 0.4916,
      "step": 1300
    },
    {
      "epoch": 12.44,
      "eval_accuracy": 0.9231923192319232,
      "eval_f1_score": 0.8839178584078228,
      "eval_loss": 0.6185785531997681,
      "eval_precision": 0.8887592838927109,
      "eval_recall": 0.8794527947878894,
      "eval_runtime": 6.0868,
      "eval_samples_per_second": 547.575,
      "eval_steps_per_second": 8.707,
      "step": 1300
    },
    {
      "epoch": 13.4,
      "grad_norm": 3.3584494590759277,
      "learning_rate": 7.222222222222223e-06,
      "loss": 0.479,
      "step": 1400
    },
    {
      "epoch": 13.4,
      "eval_accuracy": 0.9201920192019202,
      "eval_f1_score": 0.8847465693125924,
      "eval_loss": 0.6285073161125183,
      "eval_precision": 0.8863862882902076,
      "eval_recall": 0.8833493957517122,
      "eval_runtime": 6.0466,
      "eval_samples_per_second": 551.218,
      "eval_steps_per_second": 8.765,
      "step": 1400
    },
    {
      "epoch": 14.35,
      "grad_norm": 4.605256080627441,
      "learning_rate": 6.944444444444445e-06,
      "loss": 0.4812,
      "step": 1500
    },
    {
      "epoch": 14.35,
      "eval_accuracy": 0.9240924092409241,
      "eval_f1_score": 0.8919400441736002,
      "eval_loss": 0.6176608204841614,
      "eval_precision": 0.8911083019322857,
      "eval_recall": 0.8930303467825517,
      "eval_runtime": 6.0144,
      "eval_samples_per_second": 554.172,
      "eval_steps_per_second": 8.812,
      "step": 1500
    },
    {
      "epoch": 15.31,
      "grad_norm": 5.669193744659424,
      "learning_rate": 6.666666666666667e-06,
      "loss": 0.4667,
      "step": 1600
    },
    {
      "epoch": 15.31,
      "eval_accuracy": 0.9255925592559255,
      "eval_f1_score": 0.8847926962066609,
      "eval_loss": 0.6205594539642334,
      "eval_precision": 0.8843481979823253,
      "eval_recall": 0.8852982243831954,
      "eval_runtime": 6.1133,
      "eval_samples_per_second": 545.203,
      "eval_steps_per_second": 8.67,
      "step": 1600
    },
    {
      "epoch": 16.27,
      "grad_norm": 3.3217363357543945,
      "learning_rate": 6.3888888888888885e-06,
      "loss": 0.4668,
      "step": 1700
    },
    {
      "epoch": 16.27,
      "eval_accuracy": 0.9264926492649265,
      "eval_f1_score": 0.8854482169609333,
      "eval_loss": 0.6200627684593201,
      "eval_precision": 0.8837445827045557,
      "eval_recall": 0.8875863206208373,
      "eval_runtime": 6.0633,
      "eval_samples_per_second": 549.698,
      "eval_steps_per_second": 8.741,
      "step": 1700
    },
    {
      "epoch": 17.22,
      "grad_norm": 3.535698652267456,
      "learning_rate": 6.111111111111112e-06,
      "loss": 0.4635,
      "step": 1800
    },
    {
      "epoch": 17.22,
      "eval_accuracy": 0.9252925292529253,
      "eval_f1_score": 0.8901467035784716,
      "eval_loss": 0.6252107620239258,
      "eval_precision": 0.8926952965988483,
      "eval_recall": 0.8877172530901484,
      "eval_runtime": 6.0706,
      "eval_samples_per_second": 549.043,
      "eval_steps_per_second": 8.731,
      "step": 1800
    },
    {
      "epoch": 18.18,
      "grad_norm": 3.0793726444244385,
      "learning_rate": 5.833333333333334e-06,
      "loss": 0.4593,
      "step": 1900
    },
    {
      "epoch": 18.18,
      "eval_accuracy": 0.9273927392739274,
      "eval_f1_score": 0.88911901951679,
      "eval_loss": 0.626419723033905,
      "eval_precision": 0.8887473645082232,
      "eval_recall": 0.8899116044774821,
      "eval_runtime": 6.0336,
      "eval_samples_per_second": 552.41,
      "eval_steps_per_second": 8.784,
      "step": 1900
    },
    {
      "epoch": 19.14,
      "grad_norm": 0.5877706408500671,
      "learning_rate": 5.555555555555557e-06,
      "loss": 0.4538,
      "step": 2000
    },
    {
      "epoch": 19.14,
      "eval_accuracy": 0.9264926492649265,
      "eval_f1_score": 0.8890948519955958,
      "eval_loss": 0.6227503418922424,
      "eval_precision": 0.8870090750160463,
      "eval_recall": 0.8913327030956307,
      "eval_runtime": 6.0553,
      "eval_samples_per_second": 550.427,
      "eval_steps_per_second": 8.753,
      "step": 2000
    },
    {
      "epoch": 19.14,
      "step": 2000,
      "total_flos": 4678479916291584.0,
      "train_loss": 0.6728471851348877,
      "train_runtime": 1885.5017,
      "train_samples_per_second": 271.546,
      "train_steps_per_second": 2.121
    }
  ],
  "logging_steps": 100,
  "max_steps": 4000,
  "num_input_tokens_seen": 0,
  "num_train_epochs": 39,
  "save_steps": 100,
  "total_flos": 4678479916291584.0,
  "train_batch_size": 64,
  "trial_name": null,
  "trial_params": null
}