File size: 2,318 Bytes
2427f0f 2e77566 2427f0f 2e77566 2427f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
base_model: facebook/convnextv2-tiny-22k-384
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnext-tiny-upgrade-384-batch-16
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9369047619047619
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnext-tiny-upgrade-384-batch-16
This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-384](https://huggingface.co/facebook/convnextv2-tiny-22k-384) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2389
- Accuracy: 0.9369
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.855 | 1.0 | 1099 | 0.4926 | 0.8577 |
| 0.6243 | 2.0 | 2198 | 0.3875 | 0.8911 |
| 0.4776 | 3.0 | 3297 | 0.3230 | 0.9125 |
| 0.4535 | 4.0 | 4396 | 0.2854 | 0.9205 |
| 0.4204 | 5.0 | 5495 | 0.2915 | 0.9169 |
| 0.3756 | 6.0 | 6594 | 0.2914 | 0.9193 |
| 0.3603 | 7.0 | 7693 | 0.2645 | 0.9272 |
| 0.2885 | 8.0 | 8792 | 0.2599 | 0.9280 |
| 0.2753 | 9.0 | 9891 | 0.2565 | 0.9292 |
| 0.2902 | 10.0 | 10990 | 0.2526 | 0.9292 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|