File size: 2,306 Bytes
526b190 2f94bb4 526b190 2f94bb4 526b190 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
base_model: facebook/convnextv2-tiny-22k-384
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnext-tiny-upgrade-384-batch-32
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9297619047619048
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnext-tiny-upgrade-384-batch-32
This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-384](https://huggingface.co/facebook/convnextv2-tiny-22k-384) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2521
- Accuracy: 0.9298
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9343 | 1.0 | 550 | 0.5732 | 0.8410 |
| 0.6456 | 2.0 | 1100 | 0.4130 | 0.8843 |
| 0.5478 | 3.0 | 1650 | 0.3537 | 0.9026 |
| 0.466 | 4.0 | 2200 | 0.3012 | 0.9181 |
| 0.4619 | 5.0 | 2750 | 0.3031 | 0.9141 |
| 0.4046 | 6.0 | 3300 | 0.2971 | 0.9157 |
| 0.3852 | 7.0 | 3850 | 0.2763 | 0.9205 |
| 0.3346 | 8.0 | 4400 | 0.2712 | 0.9225 |
| 0.3386 | 9.0 | 4950 | 0.2672 | 0.9221 |
| 0.3462 | 10.0 | 5500 | 0.2655 | 0.9245 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|