--- language: zh-HK license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: Wav2Vec2 XLS-R 300M Cantonese (zh-HK) LM results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: zh-HK metrics: - name: Test CER type: cer value: 24.09 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: zh-HK metrics: - name: Test CER type: cer value: 23.1 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: zh-HK metrics: - name: Test CER type: cer value: 23.02 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: zh-HK metrics: - name: Test CER type: cer value: 56.86 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: zh-HK metrics: - name: Test CER type: cer value: 55.76 --- # Wav2Vec2 XLS-R 300M Cantonese (zh-HK) LM Wav2Vec2 XLS-R 300M Cantonese (zh-HK) LM is an automatic speech recognition model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [Wav2Vec2-XLS-R-300M](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the `zh-HK` subset of the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. A 5-gram Language model, trained on multiple [PyCantonese](https://pycantonese.org/data.html) corpora, was then subsequently added to this model. This model was trained using HuggingFace's PyTorch framework and is part of the [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by HuggingFace. All training was done on a Tesla V100, sponsored by OVH. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-lm-v2/tree/main) tab, as well as the [Training metrics](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-lm-v2/tensorboard) logged via Tensorboard. As for the N-gram language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by HuggingFace. ## Model | Model | #params | Arch. | Training/Validation data (text) | | --------------------------------- | ------- | ----- | ------------------------------- | | `wav2vec2-xls-r-300m-zh-HK-lm-v2` | 300M | XLS-R | `Common Voice zh-HK` Dataset | ## Evaluation Results The model achieves the following results on evaluation without a language model: | Dataset | CER | | -------------------------------- | ------ | | `Common Voice` | 31.73% | | `Common Voice 7` | 23.11% | | `Common Voice 8` | 23.02% | | `Robust Speech Event - Dev Data` | 56.60% | With the addition of the language model, it achieves the following results: | Dataset | CER | | -------------------------------- | ------ | | `Common Voice` | 24.09% | | `Common Voice 7` | 23.10% | | `Common Voice 8` | 23.02% | | `Robust Speech Event - Dev Data` | 56.86% | ## Training procedure The training process did not involve the addition of a language model. The following results were simply lifted from the original automatic speech recognition [model training](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2). ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 0.0001 - `train_batch_size`: 8 - `eval_batch_size`: 8 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 32 - `optimizer`: Adam with `betas=(0.9, 0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_steps`: 2000 - `num_epochs`: 100.0 - `mixed_precision_training`: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | | :-----------: | :---: | :---: | :-------------: | :----: | :----: | | 69.8341 | 1.34 | 500 | 80.0722 | 1.0 | 1.0 | | 6.6418 | 2.68 | 1000 | 6.6346 | 1.0 | 1.0 | | 6.2419 | 4.02 | 1500 | 6.2909 | 1.0 | 1.0 | | 6.0813 | 5.36 | 2000 | 6.1150 | 1.0 | 1.0 | | 5.9677 | 6.7 | 2500 | 6.0301 | 1.1386 | 1.0028 | | 5.9296 | 8.04 | 3000 | 5.8975 | 1.2113 | 1.0058 | | 5.6434 | 9.38 | 3500 | 5.5404 | 2.1624 | 1.0171 | | 5.1974 | 10.72 | 4000 | 4.5440 | 2.1702 | 0.9366 | | 4.3601 | 12.06 | 4500 | 3.3839 | 2.2464 | 0.8998 | | 3.9321 | 13.4 | 5000 | 2.8785 | 2.3097 | 0.8400 | | 3.6462 | 14.74 | 5500 | 2.5108 | 1.9623 | 0.6663 | | 3.5156 | 16.09 | 6000 | 2.2790 | 1.6479 | 0.5706 | | 3.32 | 17.43 | 6500 | 2.1450 | 1.8337 | 0.6244 | | 3.1918 | 18.77 | 7000 | 1.8536 | 1.9394 | 0.6017 | | 3.1139 | 20.11 | 7500 | 1.7205 | 1.9112 | 0.5638 | | 2.8995 | 21.45 | 8000 | 1.5478 | 1.0624 | 0.3250 | | 2.7572 | 22.79 | 8500 | 1.4068 | 1.1412 | 0.3367 | | 2.6881 | 24.13 | 9000 | 1.3312 | 2.0100 | 0.5683 | | 2.5993 | 25.47 | 9500 | 1.2553 | 2.0039 | 0.6450 | | 2.5304 | 26.81 | 10000 | 1.2422 | 2.0394 | 0.5789 | | 2.4352 | 28.15 | 10500 | 1.1582 | 1.9970 | 0.5507 | | 2.3795 | 29.49 | 11000 | 1.1160 | 1.8255 | 0.4844 | | 2.3287 | 30.83 | 11500 | 1.0775 | 1.4123 | 0.3780 | | 2.2622 | 32.17 | 12000 | 1.0704 | 1.7445 | 0.4894 | | 2.2225 | 33.51 | 12500 | 1.0272 | 1.7237 | 0.5058 | | 2.1843 | 34.85 | 13000 | 0.9756 | 1.8042 | 0.5028 | | 2.1 | 36.19 | 13500 | 0.9527 | 1.8909 | 0.6055 | | 2.0741 | 37.53 | 14000 | 0.9418 | 1.9026 | 0.5880 | | 2.0179 | 38.87 | 14500 | 0.9363 | 1.7977 | 0.5246 | | 2.0615 | 40.21 | 15000 | 0.9635 | 1.8112 | 0.5599 | | 1.9448 | 41.55 | 15500 | 0.9249 | 1.7250 | 0.4914 | | 1.8966 | 42.89 | 16000 | 0.9023 | 1.5829 | 0.4319 | | 1.8662 | 44.24 | 16500 | 0.9002 | 1.4833 | 0.4230 | | 1.8136 | 45.58 | 17000 | 0.9076 | 1.1828 | 0.2987 | | 1.7908 | 46.92 | 17500 | 0.8774 | 1.5773 | 0.4258 | | 1.7354 | 48.26 | 18000 | 0.8727 | 1.5037 | 0.4024 | | 1.6739 | 49.6 | 18500 | 0.8636 | 1.1239 | 0.2789 | | 1.6457 | 50.94 | 19000 | 0.8516 | 1.2269 | 0.3104 | | 1.5847 | 52.28 | 19500 | 0.8399 | 1.3309 | 0.3360 | | 1.5971 | 53.62 | 20000 | 0.8441 | 1.3153 | 0.3335 | | 1.602 | 54.96 | 20500 | 0.8590 | 1.2932 | 0.3433 | | 1.5063 | 56.3 | 21000 | 0.8334 | 1.1312 | 0.2875 | | 1.4631 | 57.64 | 21500 | 0.8474 | 1.1698 | 0.2999 | | 1.4997 | 58.98 | 22000 | 0.8638 | 1.4279 | 0.3854 | | 1.4301 | 60.32 | 22500 | 0.8550 | 1.2737 | 0.3300 | | 1.3798 | 61.66 | 23000 | 0.8266 | 1.1802 | 0.2934 | | 1.3454 | 63.0 | 23500 | 0.8235 | 1.3816 | 0.3711 | | 1.3678 | 64.34 | 24000 | 0.8550 | 1.6427 | 0.5035 | | 1.3761 | 65.68 | 24500 | 0.8510 | 1.6709 | 0.4907 | | 1.2668 | 67.02 | 25000 | 0.8515 | 1.5842 | 0.4505 | | 1.2835 | 68.36 | 25500 | 0.8283 | 1.5353 | 0.4221 | | 1.2961 | 69.7 | 26000 | 0.8339 | 1.5743 | 0.4369 | | 1.2656 | 71.05 | 26500 | 0.8331 | 1.5331 | 0.4217 | | 1.2556 | 72.39 | 27000 | 0.8242 | 1.4708 | 0.4109 | | 1.2043 | 73.73 | 27500 | 0.8245 | 1.4469 | 0.4031 | | 1.2722 | 75.07 | 28000 | 0.8202 | 1.4924 | 0.4096 | | 1.202 | 76.41 | 28500 | 0.8290 | 1.3807 | 0.3719 | | 1.1679 | 77.75 | 29000 | 0.8195 | 1.4097 | 0.3749 | | 1.1967 | 79.09 | 29500 | 0.8059 | 1.2074 | 0.3077 | | 1.1241 | 80.43 | 30000 | 0.8137 | 1.2451 | 0.3270 | | 1.1414 | 81.77 | 30500 | 0.8117 | 1.2031 | 0.3121 | | 1.132 | 83.11 | 31000 | 0.8234 | 1.4266 | 0.3901 | | 1.0982 | 84.45 | 31500 | 0.8064 | 1.3712 | 0.3607 | | 1.0797 | 85.79 | 32000 | 0.8167 | 1.3356 | 0.3562 | | 1.0119 | 87.13 | 32500 | 0.8215 | 1.2754 | 0.3268 | | 1.0216 | 88.47 | 33000 | 0.8163 | 1.2512 | 0.3184 | | 1.0375 | 89.81 | 33500 | 0.8137 | 1.2685 | 0.3290 | | 0.9794 | 91.15 | 34000 | 0.8220 | 1.2724 | 0.3255 | | 1.0207 | 92.49 | 34500 | 0.8165 | 1.2906 | 0.3361 | | 1.0169 | 93.83 | 35000 | 0.8153 | 1.2819 | 0.3305 | | 1.0127 | 95.17 | 35500 | 0.8187 | 1.2832 | 0.3252 | | 0.9978 | 96.51 | 36000 | 0.8111 | 1.2612 | 0.3210 | | 0.9923 | 97.85 | 36500 | 0.8076 | 1.2278 | 0.3122 | | 1.0451 | 99.2 | 37000 | 0.8086 | 1.2451 | 0.3156 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors Wav2Vec2 XLS-R 300M Cantonese (zh-HK) LM was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on OVH Cloud. ## Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0