--- language: - en pipeline_tag: text-classification tags: - text - nlp - correction --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 492513457 - CO2 Emissions (in grams): 5.527544460835904 ## Validation Metrics - Loss: 0.07609463483095169 - Accuracy: 0.9735624586913417 - Macro F1: 0.9736173135739408 - Micro F1: 0.9735624586913417 - Weighted F1: 0.9736173135739408 - Macro Precision: 0.9737771415197378 - Micro Precision: 0.9735624586913417 - Weighted Precision: 0.9737771415197378 - Macro Recall: 0.9735624586913417 - Micro Recall: 0.9735624586913417 - Weighted Recall: 0.9735624586913417 ## Usage You can use CURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Is this text really worth it?"}' https://api-inference.huggingface.co/models/wajidlinux99/gibberish-text-detector ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("wajidlinux99/gibberish-text-detector", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("wajidlinux99/gibberish-text-detector", use_auth_token=True) inputs = tokenizer("Is this text really worth it?", return_tensors="pt") outputs = model(**inputs) ``` # Original Repository ***madhurjindal/autonlp-Gibberish-Detector-492513457