File size: 13,802 Bytes
d346c8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1c66228790>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1c66228820>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1c662288b0>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1c66228940>",
        "_build": "<function ActorCriticPolicy._build at 0x7f1c662289d0>",
        "forward": "<function ActorCriticPolicy.forward at 0x7f1c66228a60>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1c66228af0>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7f1c66228b80>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1c66228c10>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1c66228ca0>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1c66228d30>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7f1c66229030>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 1,
    "num_timesteps": 1015808,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1671067893674370656,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": null,
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.015808000000000044,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOgSOBJpEYkCUhpRSlIwBbJRN6AOMAXSUR0CcpUppN9H+dX2UKGgGaAloD0MIqOMxA5UMYkCUhpRSlGgVTegDaBZHQJylrCDVYp51fZQoaAZoCWgPQwiTUWUYd7plQJSGlFKUaBVN6ANoFkdAnKe5K3/gi3V9lChoBmgJaA9DCH+/mC3ZzWBAlIaUUpRoFU3oA2gWR0Ccr4nXd0q6dX2UKGgGaAloD0MIBP7w818TZECUhpRSlGgVTegDaBZHQJyzW03Ov+x1fZQoaAZoCWgPQwi30QDeAvNhQJSGlFKUaBVN6ANoFkdAnLVTBInSfHV9lChoBmgJaA9DCBIXgEbpe2NAlIaUUpRoFU3oA2gWR0CctaKzzErHdX2UKGgGaAloD0MImSmtvyW6Y0CUhpRSlGgVTegDaBZHQJy3Mox59mZ1fZQoaAZoCWgPQwh2qKYk6yljQJSGlFKUaBVN6ANoFkdAnLzvTodMkHV9lChoBmgJaA9DCOSfGcQHV19AlIaUUpRoFU3oA2gWR0CcxBuf29L6dX2UKGgGaAloD0MI5SZqaW58ZkCUhpRSlGgVTegDaBZHQJzFc1BMSK51fZQoaAZoCWgPQwjSG+4jN0ZjQJSGlFKUaBVN6ANoFkdAnMZnZ5AyEnV9lChoBmgJaA9DCM4AF2TL1GZAlIaUUpRoFU3oA2gWR0Ccyuam4y44dX2UKGgGaAloD0MI+prlstHWXkCUhpRSlGgVTegDaBZHQJzMWgQHzH11fZQoaAZoCWgPQwgmcyzvqhFrQJSGlFKUaBVNPQJoFkdAnMy7J8v25HV9lChoBmgJaA9DCJPi4xOyF15AlIaUUpRoFU3oA2gWR0Cc5RJjDsMRdX2UKGgGaAloD0MI3IDPDyMjYUCUhpRSlGgVTegDaBZHQJzpTeyiVSp1fZQoaAZoCWgPQwiy8zY2u39iQJSGlFKUaBVN6ANoFkdAnPckxZdOZnV9lChoBmgJaA9DCBlZMsfyDGJAlIaUUpRoFU3oA2gWR0Cc933PRiPRdX2UKGgGaAloD0MI6Z0KuOfkcUCUhpRSlGgVTUsCaBZHQJz8XF4s3AF1fZQoaAZoCWgPQwhEbLBwkmJiQJSGlFKUaBVN6ANoFkdAnQDWC/XXiHV9lChoBmgJaA9DCCYYzjXMrWNAlIaUUpRoFU3oA2gWR0CdBB61LJ0XdX2UKGgGaAloD0MI8/+qI0eeYECUhpRSlGgVTegDaBZHQJ0FvN7jT8Z1fZQoaAZoCWgPQwiSlsrbEaJiQJSGlFKUaBVN6ANoFkdAnQYAsXizcHV9lChoBmgJaA9DCEhrDDohP2JAlIaUUpRoFU3oA2gWR0CdBzox59mZdX2UKGgGaAloD0MIEMmQY2ukZkCUhpRSlGgVTegDaBZHQJ0LnBtUGV11fZQoaAZoCWgPQwjizK/mgLJgQJSGlFKUaBVN6ANoFkdAnREZ8neBQXV9lChoBmgJaA9DCNU9srlqrGBAlIaUUpRoFU3oA2gWR0CdEuz5XU6QdX2UKGgGaAloD0MIrWu0HOgbZUCUhpRSlGgVTegDaBZHQJ0WqRB/qgR1fZQoaAZoCWgPQwjFVtC0RJpnQJSGlFKUaBVN6ANoFkdAnRfaYqoZRHV9lChoBmgJaA9DCC6rsBngUmRAlIaUUpRoFU3oA2gWR0CdGClzltCRdX2UKGgGaAloD0MIcefCSK9db0CUhpRSlGgVTdQBaBZHQJ0vDo3aSLZ1fZQoaAZoCWgPQwjrrYGtEpRgQJSGlFKUaBVN6ANoFkdAnTAWcjJMg3V9lChoBmgJaA9DCD86deUzhmNAlIaUUpRoFU3oA2gWR0CdM5Xk5p8GdX2UKGgGaAloD0MIJXZtb/dYcECUhpRSlGgVTSUCaBZHQJ00e3DvVmV1fZQoaAZoCWgPQwgEcokjD7BvQJSGlFKUaBVNhANoFkdAnTnmdI5HVnV9lChoBmgJaA9DCFGk+znFFnBAlIaUUpRoFU2+A2gWR0CdPLwT/Q0GdX2UKGgGaAloD0MI/p3t0RtcZ0CUhpRSlGgVTegDaBZHQJ1DnFR51Nh1fZQoaAZoCWgPQwgkRPmCFhJkQJSGlFKUaBVN6ANoFkdAnUetHYpUgnV9lChoBmgJaA9DCFrz4y8twm9AlIaUUpRoFU2gAWgWR0CdStGFzuF6dX2UKGgGaAloD0MI5Gn5gStfb0CUhpRSlGgVTRwCaBZHQJ1MZRgqmTF1fZQoaAZoCWgPQwhvRzgt+DpkQJSGlFKUaBVN6ANoFkdAnUxjlHSWq3V9lChoBmgJaA9DCCjzj77JYG1AlIaUUpRoFU3SA2gWR0CdTL11GLDRdX2UKGgGaAloD0MIJ9wr81YXY0CUhpRSlGgVTegDaBZHQJ1R3TXrdFh1fZQoaAZoCWgPQwjrxOV4hU9lQJSGlFKUaBVN6ANoFkdAnVbyB06o2nV9lChoBmgJaA9DCFzMzw1N0mFAlIaUUpRoFU3oA2gWR0CdWH65oXbedX2UKGgGaAloD0MI61VkdEA5ZECUhpRSlGgVTegDaBZHQJ1b63I+4b11fZQoaAZoCWgPQwhcHQBx1z9hQJSGlFKUaBVN6ANoFkdAnV0In8baRXV9lChoBmgJaA9DCIEk7NvJGWJAlIaUUpRoFU3oA2gWR0CdXVWFev6kdX2UKGgGaAloD0MIQGt+/KWNUkCUhpRSlGgVTQcBaBZHQJ1eWdOIqLF1fZQoaAZoCWgPQwimfAiqRqZtQJSGlFKUaBVN2QJoFkdAnV6jJ+2E03V9lChoBmgJaA9DCIy9F1+0G2ZAlIaUUpRoFU3oA2gWR0Cdc5NJe3QVdX2UKGgGaAloD0MIHccPlUbaSkCUhpRSlGgVS8doFkdAnXTDB/I8yXV9lChoBmgJaA9DCPerAN8tZnFAlIaUUpRoFU3NAWgWR0CddNpQUHpsdX2UKGgGaAloD0MITRJLyt3gakCUhpRSlGgVTfkBaBZHQJ12KT4cm0F1fZQoaAZoCWgPQwhoBvGBncFwQJSGlFKUaBVN2wNoFkdAnXbGNFSbY3V9lChoBmgJaA9DCNSCF32F6WRAlIaUUpRoFU3oA2gWR0CdfvesgdOqdX2UKGgGaAloD0MIJCnpYegdcECUhpRSlGgVTWgBaBZHQJ1/cLNOdoZ1fZQoaAZoCWgPQwi2TfG4KIJiQJSGlFKUaBVN6ANoFkdAnYVZwS8J2XV9lChoBmgJaA9DCAeVuI7xmnBAlIaUUpRoFU25AWgWR0CdiPpwjt5VdX2UKGgGaAloD0MIqkNuhpt5YUCUhpRSlGgVTegDaBZHQJ2JI2jwhGJ1fZQoaAZoCWgPQwiDh2nf3KZjQJSGlFKUaBVN6ANoFkdAnYvwcxTKknV9lChoBmgJaA9DCJQ0f0xrLmFAlIaUUpRoFU3oA2gWR0CdjW0dilSCdX2UKGgGaAloD0MIjwBuFi/WLcCUhpRSlGgVS9xoFkdAnZQfF72L53V9lChoBmgJaA9DCFuzlZf8UzPAlIaUUpRoFU0cAWgWR0Cdl9G2CulodX2UKGgGaAloD0MIiQlq+JYsZUCUhpRSlGgVTegDaBZHQJ2Z2ONo8IR1fZQoaAZoCWgPQwiy2vy/anxvQJSGlFKUaBVNUANoFkdAnZnm2gFotnV9lChoBmgJaA9DCEuRfCUQanBAlIaUUpRoFU11A2gWR0CdmmziS7oTdX2UKGgGaAloD0MIezNqvsoJaECUhpRSlGgVTegDaBZHQJ2fMaS9ugp1fZQoaAZoCWgPQwhSD9HojutwQJSGlFKUaBVNdwFoFkdAnaDlE/jbSXV9lChoBmgJaA9DCGnDYWngoGZAlIaUUpRoFU3oA2gWR0CdocoSL61tdX2UKGgGaAloD0MIiXjr/NuYcECUhpRSlGgVTSoCaBZHQJ2h4xBVuJl1fZQoaAZoCWgPQwjLD1zlCbxgQJSGlFKUaBVN6ANoFkdAnaOn80k4WHV9lChoBmgJaA9DCOASgH9KU2NAlIaUUpRoFU3oA2gWR0Cdt6SWZ7XydX2UKGgGaAloD0MIDM7g79eJcUCUhpRSlGgVTfcBaBZHQJ236WhRIjJ1fZQoaAZoCWgPQwgvibMiatRlQJSGlFKUaBVN6ANoFkdAnbk+ZgG8mXV9lChoBmgJaA9DCAmocASpTGFAlIaUUpRoFU3oA2gWR0CdufDklu3udX2UKGgGaAloD0MIiBBXzt7fRECUhpRSlGgVS8poFkdAnbxhT850bXV9lChoBmgJaA9DCMfUXdmFSHBAlIaUUpRoFU14AWgWR0CdvfaBqbjMdX2UKGgGaAloD0MIvTrHgOxkb0CUhpRSlGgVTYIDaBZHQJ2+LteD3/R1fZQoaAZoCWgPQwjqdYvAmBRwQJSGlFKUaBVNSQFoFkdAncC+TeO4onV9lChoBmgJaA9DCNobfGEy5GJAlIaUUpRoFU3oA2gWR0Cdw93N9ph4dX2UKGgGaAloD0MIT3XIzXAbcUCUhpRSlGgVTTQCaBZHQJ3Fxg8bJfZ1fZQoaAZoCWgPQwhmaafmcr8+QJSGlFKUaBVLp2gWR0Cdyfy44Ia+dX2UKGgGaAloD0MI1IBB0qdDbUCUhpRSlGgVTV4BaBZHQJ3MSkfs/pt1fZQoaAZoCWgPQwjcKR2sf5FuQJSGlFKUaBVNQwJoFkdAnddEc0cfeXV9lChoBmgJaA9DCPgXQWOmuW5AlIaUUpRoFU1hAmgWR0Cd2Yh8IAwPdX2UKGgGaAloD0MIgPPixFe/YkCUhpRSlGgVTegDaBZHQJ3cgfr8iwB1fZQoaAZoCWgPQwhIbk267S1yQJSGlFKUaBVNowFoFkdAnd1nARChOHV9lChoBmgJaA9DCOIDO/6L1W9AlIaUUpRoFU0LA2gWR0Cd4cfcer+6dX2UKGgGaAloD0MI+kffpKk6ckCUhpRSlGgVTc4BaBZHQJ3iIyvcJt11fZQoaAZoCWgPQwh0Iywq4vtgQJSGlFKUaBVN6ANoFkdAneK/1L8JlnV9lChoBmgJaA9DCPRtwVLd6GRAlIaUUpRoFU3oA2gWR0Cd40AP/aQFdX2UKGgGaAloD0MIlrN3RlvXQUCUhpRSlGgVTQoBaBZHQJ3mJQcghbJ1fZQoaAZoCWgPQwg83XniORdDQJSGlFKUaBVLvmgWR0Cd5n3cYZVGdX2UKGgGaAloD0MIF7oSgeoDbkCUhpRSlGgVTeMBaBZHQJ3n5vJiiIt1fZQoaAZoCWgPQwjBdFq3QYpnQJSGlFKUaBVN6ANoFkdAneldzbN8mnV9lChoBmgJaA9DCLgf8MAA8V9AlIaUUpRoFU3oA2gWR0Cd6XQYk3S8dX2UKGgGaAloD0MIrYTukrhfbUCUhpRSlGgVTTQBaBZHQJ3rnyPMjeN1fZQoaAZoCWgPQwggnE8d615wQJSGlFKUaBVNeQNoFkdAnewgEU0vXnVlLg=="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 248,
    "n_steps": 1024,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 4,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}