whisper-small-zh-hk / README.md
weitao06's picture
End of training
62d3a00 verified
metadata
library_name: transformers
language:
  - zh
license: apache-2.0
base_model: openai/whisper-small
tags:
  - whisper
  - cantonese
  - zh-hk
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: whisper-small-zh-hk
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: zh-HK
          split: None
          args: 'config: zh-HK, split: train'
        metrics:
          - name: Wer
            type: wer
            value: 200.48085485307215

whisper-small-zh-hk

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2332
  • Wer: 200.4809

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3422 0.5708 1000 0.3029 237.3286
0.1806 1.1416 2000 0.2574 181.2467
0.1626 1.7123 3000 0.2383 171.2199
0.0892 2.2831 4000 0.2332 200.4809

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3